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CHAPTER 1
Introduction

This manual was written as a guide for users who have at least some experience
with other programming languages. It describes the general language features
of OMAR, but does not desctibe Hypercosm’s graphics extensions to the
language. Those are desctibed in The Hypercosm 3D Graphics System Guide.

Readers interested in using OMAR for 3D graphics development should read
both manuals in conjunction. The Hypercosm 3D Graphics System Guide can get
you started in creating Hypercosm graphics, but you cannot make full use of
Hypercosm’s capabilities without first gaining the basic understanding of OMAR
that this manual provides.

Reasons for OMAR

There are perhaps hundreds of different programming languages, so it might
seem like the last thing that the world needs is yet another one. If you are
already a programmer, a new programming language just means another syntax
to get used to and even worse, another set of semantic rules to confuse with
the rules you already know.

There are, however, a number of very good reasons for OMAR. It was
developed because there simply are no other languages which have the features
of safety, architecture independence, generality, and expressiveness that are
required for today’s applications.

You may say that people are getting along just fine so far with C and C++,
the standard programming languages these days. Yes, it is theoretically possible
to write bug-free, understandable code in C, but in practice, code written in C
is almost always bug-ridden, difficult to read and understand, and almost impos-
sible to share and reuse.




The more recently developed Java programming language, unlike C, generally
does provide the safety and architecture independence that OMAR aims to

provide. In fact, there are many similarities between OMAR and Java, but not
because one is derived from the other. It is more a case of parallel evolution.

OMAR was derived from a programming language called SMPL, which was
created for the purpose of controlling a 3D graphics modeling, rendering, and
animation system (hence, the current name, ‘OMAR’: Object-otiented Modeling
And Rendering). Java, originally Oak, was created to control consumer appli-
ances such as set top boxes and so forth.

What the designers of Java were in need of was a safe, platform independent
language in order to program the higher level functionality of a particular system.
When they found that no existing language was really appropriate for the task,
it became necessary to create a new language. The designers of OMAR, faced
with a similar challenge, came to the same conclusion.

OMAR, now developed far beyond the scope of its special-purpose beginnings,
aims to take programming to a level beyond Java. This evolutionary process is
nowhere near complete. You will find that many of the things that can be
described in Java are difficult to describe in OMAR, but there are many things
you can describe in OMAR that are still difficult or even impossible to describe
in Java.

The OMAR Design Philosophy

The design philosophy that guided the development of OMAR can be summa-
rized by just a few words: OMAR aims to be safe, architecture-independent,
general-purpose, and expressive.

Safety

Safety was probably the number one priority in the development of OMAR.
As software systems become more and more complex, and as computer usage
becomes more and more pervasive in society, writing safe code becomes more
and more important. A lower-level language such as C allows a programmer
great flexibility, but such flexibility can easily result in poor memory management
and obnoxiously cryptic bugs, even for experienced programmers.

We wanted a language that was powerful, yet we wanted to avoid at all costs
features that were unsafe and might cause the software to crash or behave
erratically. Although no programming language could ever make it impossible
to write unsafe code, OMAR at least makes it harder.

2
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Architecture Independence

OMAR was originally intended to describe 3D graphics and animation,

something that exists outside of the realm of any particular type of computer
or operating system. Obviously, there is no such thing as a Windows sphere
or a Unix cube. So naturally, we sought to have a programming system that
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would allow a program to run more or less identically on any system so long
as that system supported our programming and graphics environment.

There are many added benefits to an architecture-independent language. Many
software projects are so complex that they may span the life cycles of several
hardware platforms and operating systems. Porting a complex application from
one platform to another can be a nightmare in complexity if too many assump-
tions about the underlying system are made.

During the recent explosion of internet usage, architecture independence has
taken on even more importance. Computer users across the world are viewing
web pages on every imaginable type of hardware and operating system. Writing
a single web applet that can run on any of the major computer systems requires
a programming language that can disregard the particulars of any one system.
This is a major reason why Java has recently become so widely used in such a
short period of time.

We generally believe that software should be written from the highest possible
level of abstraction with as few assumptions as possible about the system that
it is to run upon. The primitives that are made available to the programmer
should be general enough to be supported by many different types of hardware
and operating systems so that the application programmer can concern himself
with the application itself instead of the nuts and bolts of a particular operating
system.

Generality
Designing a programming language, like many engineering projects, requires
balancing two opposing priorities. In our case, we must balance the need for
safety with the quest for speed. OMAR, like Java, occupies the middle ground
between high-performance, but error-prone languages such as C and fault-
tolerant, high-level languages such as Visual Basic or Perl. Wherever possible,
we chose to have error checking take place at compile-time, before the program
is loaded and run, instead of at run-time for the speediest possible execution.
To be completely safe, however, some extra run-time error checking must be
done, so a program written in OMAR will never be quite as fast as one written
in C. Work is being done, however, to create safe, high-level language constructs
that can help offset the extra cost, so eventually the speed issue may be less of
a factor.

The OMAR Design Philosophy 3



Because OMAR was originally intended to be used for a 3D graphics system,
it could have been designed as a special-purpose language that restricted itself
so much that there was no need to worty about the user writing dangerous
code. This is what has been done in the past (for example, Pixar’s Renderman
Shading Language) and continues to be done today (for example, VRML) for
many applications where the existing general-purpose languages lack the flexi-
bility to succinctly describe the situation or allow the programmer too much
flexibility to go astray. What is needed is not more and more special-purpose
languages but safer, more descriptive general-purpose languages.

Expressiveness

Whenever you translate your ideas into a computer program, you are forced to
think in terms of the computer language. The language itself determines what
is easy and what is difficult to think about. The same thing is often said about
human languages. If no words exist to describe an idea that you have, you're
stuck with a vague, unsettled feeling that wants to be an idea but can’t.

Numerous efforts have been made to make OMAR as expressive as possible.
Features such as OMAR’s smart arrays and optional parameters don’t let you
do things that you couldn’t otherwise do in C, but they do let you do things
with more clarity and elegance. This level of expressiveness translates into less
code which translates into a more productive programming environment.

Unfortunately, in the field of computers, the issue of aesthetics is usually treated
as something of secondary importance. This is foolish because it is easy to build
programs which are far more difficult and costly to fix and maintain than they
were initially to write. The designers of Ada, the programming language created
for the military knew this when they said that it is more important for a
programming language to be readable than it is for the programming language
to be writabl. Since the programming language is the base from which all
software is expressed, it makes sense to begin with a solid foundation. OMAR
attempts to give you as much power and flexibility as possible to translate your
ideas safely into code.

4
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CHAPTER 2

Comparing OMAR to
Java

If you are already familiar with one or more programming languages, then
learning OMAR should be relatively easy for you. If you already know Java,
then it ought to be especially easy.

This chapter outlines the many similarities between OMAR and Java, and notes
the few major differences. If you are not already familiar with Java, then you
may want to skip ahead to the next chapter.

Similarities to Java

OMAR is probably more similar to Java than to any other language. Although
they may look different because of cosmetic, syntactical differences, beneath the
surface you will find that they share many features and capabilities in common.

Object-Oriented Features

Both Java and OMAR have similar mechanisms for defining and using classes.
OMAR borrows the concept of interfaces from Java instead of employing
multiple inheritance like C++.

Memory Management

Like Java, OMAR provides automatic garbage collection, so you never have to
wotry about memoty leaks or bad pointers, which are the most common cause
of program crashes. In addition, since all user-defined objects are heap-allocated,
the pointer dereferencing is implicit, as in Java, instead of being explicit as in
C or Pascal.




Smart Arrays

In OMAR, arrays know their bounds as they do in Java. OMAR arrays are even
more powerful, however, because you can create true square multidimensional
arrays and because the array indices don’t always need to begin at 0 as in Java.

Primitive Data Types

OMAR employs about the same set of primitive data types as Java with two

main exceptions: OMAR uses the keyword scalar in place of float, and OMAR

does not implement a pseudo-primitive string type like Java’s. OMAR also intro-
duces two new ptimitive data types, complex and vector, which are described in

the chapter titled Variables & Data Types.

Differences from Java

Besides the obvious syntactical differences, there are just a few major differences
between OMAR and Java that might cause some confusion.

OMAR Forward Declarations

The OMAR compiler is designed to process the code in one pass instead of

the two passes used by the Java compiler. This makes it necessary for declara-
tions to always precede their use, instead of occurring anywhere in the body of
code as in Java.

In addition, circular declarations must be broken by preceding the later decla-
ration by a forward declaration, as in C. The reason for this design decision is
that it forces the programmer to declare things before they are used, so when
you are searching through the code for a declaration, you always know that you
must only look backwards towards the beginning, instead of having to search
through the entire body of code.

OMAR Implicit Object & Array Allocation

In Java, whenever an object is declared, it is assumed to be null until it gets
explicitly allocated with a new statement. In OMAR, the object is implicitly
allocated, as with the primitive types, unless explicitly initialized to null.

OMAR Class Interfaces

Class declarations in OMAR are broken up into two parts, an interface part,
which lists exported methods and members, and an implementation part, which
lists private methods, method implementations, and private members. In Java,
these are all grouped together into one, so you must search through the class
declaration to find the exported parts.

6
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Reference or Var Parameters

OMAR allows what C++ calls reference parameters and Pascal calls var param-
eters, and the implementation is less cumbersome and obscure than in Java.

Global Variables

In Java, everything that you declare must belong in a class declaration. Not
so in OMAR, where, if you like, you can have free-standing variable, method,
or type declarations. This was done because the extra structure imposed by
Java, while often helpful in larger programs, is a hindrance to getting the job
done in smaller programs.
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No Threads or Exception Handling
OMAR implements neither exception handling nor threads. Rather than being
a design decision, these features simply haven’t yet been implemented and may
be incorporated into a future version.

Differences from Java 7
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CHAPTER 3

OMAR Elements &
Structure

This chapter outlines the essentials of the OMAR programming language. It

introduces the code elements that make up an OMAR file, and desctibes how
OMAR files are generally structured.

OMAR Vocabulary

The text of a computer program is made up of a variety of different components
that have different functions. The text of an OMAR program can be broken
down into reserved words, identifiers, and special symbols.

Reserved Words

Programming languages rely on a number of words having predefined,
unchangeable meanings. These words, called reserved words, cannot be used as
identifiers when you write OMAR programs. Because OMAR 1is meant to be
both more expressive and more human-readable than other popular




programming languages, it also makes use of many more reserved words. The

following table lists OMAR’s reserved words.

Table 3-1: OMAR Reserved Words

abstract double integer objective shape
and each interface or short
anim else include parallel some
answer elseif is perpendicular static
boolean end isn't picture struct
break enum its private subject
byte exit itself protected then
char extends long public true
complex false loop question type
const final max read vector
continue for min redim verb
cross free mod reference when
dim global native refers to while
div has new renew write
do if none return with
does implements not scalar
dot in num shader
Identifiers

When you create new variables or define new data types, they must be given

names to identify them in a unique way. Such user-defined names are called
identifiers.

Here are the rules for creating a new identifier:
e It must not be a reserved word.

* It must begin with a letter and may be followed by letters, number, or the
underscore character: _

The maximum allowable length of identifiers may vaty from system to system,
but should be around 256 characters, plenty for most names.

Table 3-2: The OMAR Alphabet

‘a’..'z the lowercase letters
‘AT the uppercase letters
‘0.9 the digits

. the underscore

- character

Example: Valid Identifiers

name number_of_widgets George_Washington

counterl a not_yet_found

10 OMAR Elements & Structure



Example: Invalid Identifiers

Reason Why Identifier Is Invalid

24_bit_mode identifiers may not begin with a number
integer identifier is a reserved word
why? identifiers may contain only letters,

numbers, and underscore characters

bit-mode same reason as above

Special Symbols

In various places in the language, special symbols are required. These symbols
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may not be used in any other parts of the program where they are not specif-
ically required and may not be used as parts of identifiers.

Table 3-3: The OMAR Symbols

The semi-colon is perthaps the most important special symbol. In OMAR, as in
C and Java, every instruction must end with a semi-colon.

Case Sensitivity

Identifiers and reserved words are zof case sensitive, which means that capital
letters and small letters ate not considered to be different. This means, for
example, that the identifier, goo, is the same as the identifier GOO, Goo or GoO.

Free Format

OMAR uses free-format layout. This means that the amount of white space
between the keywords and identifiers makes no difference in the meaning of
the program. For example, the following two code snippets use different
formatting, but have the exact same meaning and will produce the same results:

Example: Free Format

while (counter < 10) do while (counter < 10) do counter = itself + 1; end;
’ counter = itself + 1;
end;

Case Sensitivity 11



OMAR File Types

There are two different OMAR file types:

¢ OMAR source files are runnable files that contain essential instructions
for producing OMAR programs. Soutce file names should carry the
extension .omar.

* OMAR resource files are not runnable, but contain ‘pieces’ of OMAR
code that may be imported for use in source files. Resource file names
carry the extension .ores.

OMAR Source File Structure

There are five major components to an OMAR source file:
* The program header
* Declarations
* Statements
* Include directives
* Comments

The Program Header

At the beginning of OMAR source files, a program header must appear that
indicates where the computer should start running the program. The header is
composed of the keyword do followed by the name of the first procedure1 the
computer should run. If you want a program to begin with a procedure named
big_task, you must begin a file with the line, do big_task;

C and Java do not use a header but instead rely on the convention that the
first procedure run is named main. OMAR, on the other hand, allows you to
name your procedures whatever you’d like, but requires that you include a
program header to indicate which procedure to run first.

Only one procedure may be named in the header. Note that there may be many
procedures declared in the code that are not listed in the header. These proce-
dures can still be executed by being called from another procedure. All proce-
dures that are executed are called either directly or indirectly from the procedure
listed in the header.

Note: The major difference between source files and resource files is that
resource files need not contain a header, and therefore cannot be compiled and
run by themselves. Otherwise, resource files have the same structure as source

files.

1.Procedures are independent sections of code. In other languages and contexts, procedures are
also known as functions, routines, subprograms, and methods. Procedures will be discussed more
in later chapters.

12 OMAR Elements & Structure



Declarations

Following the program header is a list of declarations. The declarations compose
the body of the program. Declarations fall into three general categories:

e Data declarations
* Type declarations

¢ Procedure declarations.

)
Example: A Program Header & Declarations %
(%)
A
do task2; // Program header: task2 will be run first. g :T"'
integer a; // A data declaration % g
enum answer is yes, no, maybe; // A type declaration g-
verb taski is /[ A procedure declaration R
{declarations}
{statements}
end;
verb task? is
{declarations}
{statements}
task3; // task3 is called here in task2.
end;
verb task3 is
{declarations}
{statements}
taskd; // task1 is called here in task3.

end;

Data Declarations
Data that is used by the program is placed in storage locations called variables.
During the execution of the program, the actual values that are contained in
the variables may change, but the type of the data will remain the same.

For example, an integer variable might at some time have a value of 5. Later
on, it might be equal to 10, but it will never contain values like 0.001, “A” or
false because these values are not considered to be integers. This is because the
storage boxes needed to hold some kinds of data are bigger than the ones that
are required for other kinds of data.

All data that is used in OMAR programs must be explicitly declared before it
can be used. If you find that you need a variable to store a value, you must

first tell the computer what type the variable is and what name the variable has.
This is what is known as its declaration. In addition, you may be able to specify
attributes about how the variable is stored, such as whether or not it can be

changed.

OMAR Source File Structure 13



When you declare a variable, you do not have to specify its value. If you do
not, then its value is undefined until you explicitly set the value of the variable.
This is usually done with the assignment statement but you can also initialize
the variable when you declare it.

The different data types that appear below will be described more fully in a
later chapter.

Example: Data Declarations

integer counter;
scalar temperature = 32.0;
const scalar pi = 3.1415936;
boolean done is false;
scalar x, y, z; // Here, three variables are declared at once.
vector red =<1 0 0>, green = <0 1 0>, blue =<0 0 1>; // Here, three variables are declared
/[ and initialized.
complex i =<0 1>;
char quitis "q";
string type name is "Bob"; /[ Here, string is a user-defined type.

Type Declarations
Type declarations are used to define a new type of data when the built-in data
types are not sufficient. Type declarations begin with the keywords enum, struct,
or subject. These will be covered in more detail later.

Example: Type Declarations

enum material is straw, wood, brick;  // material is a new data type that can have values of

/| straw, wood, or brick.
struct person has // person is a new data type composed of an integer and an
/[ array of type char.
integer age;
char name[];

end;

Procedure Declarations
Procedure declarations make up the body of the programming language because
all programming instructions (statements) must reside inside of procedures.
In OMAR, there are two basic types of procedures:

* VVerbs specify some sequence of actions that the computer should do.

* Questions are much like verbs except that they also return a value to the
procedure that called them.

When using OMAR for 3D graphics, four more types of procedures are used:
shapes, pictures, anims, and shaders.

14 OMAR Elements & Structure



Statements

Statements are the part of a program that actually tells the computer what to
do with data. There are many different kinds of statements—assignment state-
ments, if statements, looping statements, read and write statements, and

procedure calls, for example. All of these will be described in more detail later.
However, there are some important general rules that apply to all statements:

o Al statements must reside inside of procedure declarations. Declarations, on the
other hand, can appear in any part of a file after the header and after any
include directives.

* In any given block of code, all statements must come after all declarations. The
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tricky part of this rule is in understanding exactly what a ‘block of code’
is. This concept will be made clearer later.
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The Include Directive

In order to enable greater modularity, OMAR files have the ability to import
code from other OMAR files. Each source file has its own header line at the
top, which tells which of the procedures to run if that file is to be executed.
When a file is included, its header line (if it has one) is ignored. Also, the
language keeps track of which files have been included so far, so if a file gets
included more than once, then the second include is ignored.

Example: The Include Directive

do test;
include "hashtables.ores"; // Includes a resource file that contains hashtable definitions.
include "thing.omar"; /[ Includes a source file that contains the definition of a thing type.
verb test is
hashtable type table; // A data declaration: creates a hashtable called table.
thing type thing1; /[ A data declaration: creates a thing called thing1.
table add thingl as “fred”; // A statement.
end;
Comments

Comments are sections of text in a file that are ignored by the computer. It is
a very good idea to use comments to describe exactly what your code is doing,
and to label different sections of code so that you can recognize those sections
more easily. Comments can also be used to temporarily disable a piece of code
without permanently deleting it from the file. This is called commenting out your
code.

OMAR suppotts two types of comments: line comments and block comments.

OMAR Source File Structure 15



Line comments
The first type of comment is called a /Jne comment because it spans only one line
in the program. Line comments are indicated by two forward slashes, //. When
the compiler encounters this symbol, it ignores all text until the end of the line,
so you can include any kind of text or symbols on the line as a comment.

Example: Line Comments

// This is a comment
integer a; // This is a comment following a code declaration

Block comments
The other, more powerful form of comment is the block comment. Block
comments may span multiple lines and may even include other line or block
comments. Block comments are formed by enclosing the commented text by a
pair of curly braces. Generally, block comments should be used for commenting
out blocks of code and not in cases where line comments may be used instead.

Example: Block Comments

{ This is a block comment. }

{
This is also a block comment.

{
This shows how block comments can enclose other {block comments}
and also // line comments.
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CHAPTER 4

Variables & Data Types

Variables

Variables are used to store data that is used by a computer program. They can
represent such things as color, temperature, positions of objects—almost
anything that can be measured quantitatively or represented symbolically. Once
data is stored in variables, it can be retrieved, examined, and changed.

Keep in mind these rules about variables:

* Each variable that you use must be declared before you can use it. A variable
declaration is where a variable is ‘born’ and given its name and type.

* The names given to variables must be unique so that there is no confusion
as to which variable you are referring to.

* Variables may be given initial values, but if no initial value is given, variables
remain undefined until they are given a value at some point in the future.

To declare a new vatiable, use the following format:

Figure 4-1: Variable Declaration Syntax

<data type name> <variable name> <optional initializer> ;

Example: Variable Declarations

integer counter;

double pi = 3.1415926535897932384;
scalar speed_of_light =3 * (1078);
vector location = <5 0 100>;
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Data Types
Each variable is said to be of a certain data type. The type determines what kind
of data the variable can store. Once the variable is created, it can never change
its type.

The OMAR language has a predefined set of basic, or primitive, data types. (Motre
complex data types can be defined by the user as discussed later.) A more
detailed description of the properties of each of these data types is given in the
following sections.

Table 4-1: The OMAR Primitive Data Types

Name Contents Size Min Value

boolean  True Or False 1 Bit N.A. N.A.
char Unicode :
Character 16 Bits/2 Bytes Chr(0) Chr(32767)
byte Signed Integer 8 Bits/1 Byte -128 127
short Signed Integer 16 Bits/2 Bytes -32768 32767
integer Signed Integer 32 Bits/4 Bytes w2l 2.147 Billion
Billion
long : . -9.223 9.223
Signed Integer 64 Bits/8 Bytes Quintillion Quintillion
scalar Single . +/- 1.402 E
Precision FP 32 Bits/4 Bytes _45 +/- 3.40 E 38
double Double ] +/- 494 E
Precision Fp 0% Bits/8 Bytes 324 +/- 1.79 E 308
complex A Pair Of 64 Bits/8 Bytes Same As Same As
Scalars Scalar Scalar
vector A Triplet Of 96 Bits/ Same As Same As
Scalars 12 Bytes Scalar Scalar

Note that there is no predefined string type as thete is in Java. In OMAR,
strings are implemented as arrays of characters, as they are in C. Otherwise,
OMAR's set of primitives is very similar to Java's.

Boolean

A boolean value is either true or false. These values are useful in describing
such things as whether something is on or off, done or not done, or in any
other situation where there are only two possible states. The constants, true and
false, are predefined and reptesent the two possible boolean values.
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Two boolean values may be combined using boolean operators to yield a
boolean result. For example, one boolean variable, named booll, is set to true.
Another boolean variable, named bool2, is set to false. The expression (booll
and bool2) evaluates to false because booll and bool2 are not both true. The
expression (booll or bool2) evaluates to true because at least one of the two
boolean values is true. The expression (not booll) evaluates to false because
booll is true, and not booll is therefore false. If an expression involving both
and and or is evaluated, then the and operator takes precedence over the or
operator. For example, the expression, (a or b and c) is evaluated as (a or (b
and ¢)).

s

Table 4-2: Boolean Operators g
o

Operator Purpose o
and Logical And E;

Y

or Logical Or =

3

not Logical Not &

When a boolean variable is assigned a value, the keyword is is used instead of
the standard assignment operator, =. This feature of OMAR is one of many
that are meant to make OMAR a more readable language.

Variables of all primitive types may be compared with other variables of the
same type for equality or inequality. Integer and scalar operators may also be
compared using the greater than or less than operators to yield boolean values.

Table 4-3: Relational Operators

Operator Purpose

= Equality
<> Inequality
> Greater Than
< Less Than
>= Greater Than Or Equal
<= Less Than Or Equal
is Equality (Between Non-Numerical
Types)
isn't Inequality (Between Non-Numerical
Types)
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Example: Using the Boolean Data Type

boolean done is false;

boolean condition3 is condition1 and condition2;
boolean overflow is (number > limit)

boolean error is (number = 0) or not done;

boolean condition is (charl is "a") and (char2 isn't "b");

Char

A char is a variable that can represent any element of the character set present
on a computer keyboard. Examples of chars ate the letters of the alphabet
through z, the capital letters of the alphabet .4 through Z, the characters repre-
senting the digits 0 through 9, and special symbols such as the period, ‘’, or
the semicolon, . In addition, a char may also be a special non-printable
character which has some special meaning to the computer, such as a tab, space,
or carriage return. To denote a particular character, place the character within
double quotes.

Every character is represented as a number in the computer, which means that
each character has a unique matching number code. The functions below can
be used to convert between a char and its integer number code. To use them,
you must include the resource file math.otes in your OMAR file.

Table 4-4: Char-Integer Conversion Functions

chr X Returns the character with the integer character code of X

ord X Returns the integer character code for a particular character, X

The char type, like the boolean type, uses the is operator for assignment instead
of using =.

Example: Using the Char Data Type

include "math.ores"; // include this file in order to use the chr function

char chis "A";
char space is chr 32;
char name[] = "Fred Freugelbugger";  // an array of chars

Strings
Often you need a way of creating a variable to hold a list, or s#ring, of characters.

In OMAR, strings are implemented as char atrays (arrays will be covered in
greater detail in later sections.)
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It is possible define a type string to stand for an array of char so you don’t
have to use array-indicating brackets each time you want to want to use the
type. This is actually already done for you in the file strings.ores, which you
may include in your files when you want to use strings. To learn more about
how strings work, you should first learn how arrays work, and learn a little
about OMAR’s object-oriented features. Then you can look at strings.ores itself
to see how strings are implemented there.

Even if you don’t completely understand string implementation, you should still
find strings easy and helpful to use. To assign a stting as a unit, use the is
operator. See the chapter on arrays for a more detailed discussion of array
operators and issues. The example file below, which you can run yourself,
shows how strings can be used.

Listing 4-1: Using the String Type in strings.ores

do write_strings;

<
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include "strings.ores"; // You must include this to use OMAR's standard string type.

verb write_strings is
string type name is "Larry"; // Because the string type is a user-defined type (defined in the file
// "strings.ores") and not a primitive type, the keyword type must
// be used when you use the string type.

write name, ; /[ This statement writes out "Larry".
name[1] is "H"; // This changes the first character in name to "H". This works because
/[ strings work just like arrays.
write name, ; // Writes out "Harry".
end; /[ compare_strings

Byte, Short, Integer, & Long

Integers are the familiar counting numbers, 1, 2, 3, etc., and are useful for
representing things that can have only whole number values, such as the number
of characters in a file, the number of objects in a list, etc.

To store integer data in an OMAR program, you use one of the types byte,
short, integer, or long. The difference between these types is not in what kind
of data they stote, but in their sizes. A byte, as its name implies, is only one
byte in size, and can therefore only hold numbers in the range of -128 to 127.
Consult the table “The OMAR Primitive Data Types” on page 18 to see what
the number ranges ate for the other integer data types.
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The following operators can use integer operands to yield integer results.

Table 4-5: Integer Operators

+ Addition

= Subtraction

o Multiplication
div Integer Division
mod Modulo

(Remainder)

- (Unary) Negation

The operators mod and div are special integer division operators, required
because integers must always be whole numbets. The div operator is the same
as / except that the result of a div operation is rounded down to the neatest
integer, and the mod operator gives the remainder of a division. Thus (11 div
3) results in 3, and (11 mod 3) results in 2.

There are a number of functions in the math.ores resource file that return
integer results. To use these, you must include math.ores in your source file.

Table 4-6: Integer Functions in math.ores
iabs X Absolute Value of the Integer X
isqr X Result Is the Integer X Squared
trunc X X Is A Scalar Value, The Result Is The Whole (Integer) Part Of X
round X X Is A Scalar Value, The Result Is The Nearest Integer. If X Is
Midway Between Two Integers, Then We Return The Larger One.
Example: Using the Integer Data Types
integeri=0;
short goo = -1000;
integer value = trunc 3.1415;

byte a = -value;
long b = 400000 * (isqr 144);
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Scalar & Double

Scalars are numbers that represent a continuous range of values, like height,
temperature, or radius, where there can be a theoretically infinite number of
intermediate values. In the mathematical wotld, these are known as real numbers.
Computer scientists refer to the method of representing real numbers in
computers as floating-point arithmetic.

To store floating-point numbers in OMAR, you use either a scalar or double
type. Here again, the difference between the two types is not in what kind of
data they store, but in their sizes. A scalar is four bytes in size, and a double
is eight bytes in size.

There are a variety of operators that can take integer and scalar operands and
produce a scalar result. Since integers are a subset of scalars, integers are
automatically converted to scalars where the situation warrants it.

Table 4-7: Scalar Operators

+ Addition
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= Subtraction

* Multiplication

/ Division

A Exponentiation
- (Unary) Negation

There are also a number of functions in math.ores that take a scalar operand
and produce a scalar result. Integers may also be used as the operands to these
functions and they will automatically be converted to scalars to yield the proper
result.

Scalar & Double 23



Table 4-8: Scalar Functions in math.ores

Func- Purpose Func- Purpose
tion tion

abs X Absolute Value of X sin X Trigonometric Sine of X
sqr X Result Is X Squared cos X Trigonometric Cosine of X
In X Natural Logarithm of X tan X Trigonometric Tangent of X
log X Log in Base 10 of X asin X Trigonometric Arcsine of X
exp X Exponential (e*x) acos X  Trigonometric Arccosine of X
sqrt X Square Root of X atanX  Trigonometric Arctangent of X

Note: Trigonometric functions use degrees, not radians

Example: Using the Scalar & Double Data Types

scalar temperature = 32.0;
double infinity = 1050;

scalar pi = 3.1415926;

scalar x = 0;

double length = sqrt 0.48;
scalar a = (-pi / 4) + length * x;

Complex

Complex numbers are numbers of the form: @ + (b * ;) where 7 represents the
square root of -1. These numbers are used in a number of scientific applications
and in computing fractal images such as the famous Mandlebrot set. The variable
a is called the real part because it is not multiplied by z The variable 4 is called
the imaginary part because it is multiplied by 7 which is not a member of the
set of real numbers.

Complex numbers are a superset of scalars because if the imaginary part is equal
to 0, then the complex number is the same as a scalar. If the imaginary part is
not equal to 0, then special rules must be used to perform operations on these
numbers. The most common operations ate covered by the built-in operators
listed below.
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Table 4-9: Complex Operators

+ Addition

- Subtraction

* Multiplication

/ Division

2 Exponentia-
tion

- (Unary) Negation

Extracting the Real & Imaginary Components
In order to extract the complex and imaginary parts of an imaginary number,
you must use the two functions, real and imag, which are found in the resource
file native_math.ores. They return scalar values when passed a complex
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operand.

Table 4-10: Extracting The Scalar Fields of a Complex Number

Func- Purpose
tion

real X Returns The Real Part Of X

imagX  Returns The Imaginary Part Of X

Example: Using the Complex Data Type

complexi=<01>;
complex i_times_2 = <0 1> * 2;

In OMAR, a vector is simply a set of three scalars. You can represent many
concepts in the real woztld by these triplets of three numbers. Vectors are used
in mathematics, physics, and computer graphics to describe locations and direc-
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tions in three-dimensional space. In addition, colors can be specified by vectors
because all colors can be described as a combination of three primary colors.

Table 4-11: Vector Operators

+ Vector Addition

= Vector Subtraction

o Vector Or Scalar Multiplication
/ Vector Or Scalar Division
dot Dot Product (Scalar Product)
cross Cross Product (Vector Product)
parallel Parallel Component
perpendicular Perpendicular Component
- (Unary) Negation (Reverse Direction)

Note: Vector operations produce vectors, except
for dot products, which produce a scalar.

Multiplication and division can be performed on
either two vectors, or on a vector and a scalar.

Accessing the Components of a Vector

The three components of the vector are called the x, y, and z components of
the vector. They can be accessed much like fields of a C or Java object, by
using a period. For example, to access the x component of a vector named
location, you use the syntax: location.x.

Example: Using the Veector Data Type

vector white = <11 1>;
vector location = <1 -3 2> cross -<1 2 5> dot <11 0>;
vector u = location * 5;
vectorw =u*<.5.3.5>;
vector v = u parallel w;  // v is the component vector of u parallel to w,
/| oralso, the projection of u onto w
wy =0.8; // Sets the y component of w to 0.8
location.z = location.x; // Sets the z component of location equal to its x component

Constants

Constants are just like variables except that their values cannot be changed. All
constants must be given an initial value, which is permanent. Constants may be
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declared any place that variables are declared. The format for declaring constants
is similar to variables:

Figure 4-2: Constant Declaration Syntax

const <type name> <variable name> <mandatory initializer> ;

Example: Constant Declarations

const scalar freezing_point = 32;
const scalar pi = 3.14159265;

const scalar e = 2.718281828;

const boolean on is true, off is false;

pi = 3.14159265; // Error - a constant may only be assigned by its initializer

Reference Variables

Reference variables are special variables that look and behave just like regular
variables. They are different, however, because the actual memory for their
data must be shared with a normal variable. A reference variable declaration
1s just like a normal vatiable declaration except that the keyword reference follows
the data type.
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References are a lot like pointers in C++ or Pascal, except that they have extra
checking built in to guard against the kind of mistakes that pointers are notorious
for causing.

In order to assign a reference to a vatiable, use the syntax: a refers to b. If you
are a C programmet, you can think of this as a = &b. If a reference does not
refer to anything at all, then it is said to refer to none. This is like null in C or
Java. All reference variables ate initialized to refer to none when they are created,
and if an attempt is made to use them before they are assigned to refer to
something, then a run-time error results.

Figure 4-3: Reference Variable Declaration Syntax

<data type name> reference <variable name> <optional initializer> ;
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Example: Using Reference Variables

integera=0,b=0;

integer reference c refers to none;

crefers to a;
c=10;
creferstob;
b=147;
write"a=",3,;
write'c=",¢,;

// Assigns the value 10 to c and a
// Assigns the value 47 to b and ¢

/| Writes out "a = 10"
// Writes out "c = 47"
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CHAPTER 5

OMAR Statements

This chapter describes OMAR statements and how to use them.

The Assighment Statement

The most basic statement is the assignment statement, which simply assigns a
value to a variable. The value of the variable is specified by an expression. The
expression may be as simple as the name of another variable of the same type,
or as complex as a mathematical formula involving many different terms. In
OMAR, it is considered an error to assign variables to themselves, since this

effectively does nothing. The basic form of the assignment statement is as
follows:

Figure 5-1: The Assignment Statement

<variable identifier> <assignment operator> <expression> ;

The Assignment Operators

Four different assignment operators are used to assign different types in OMAR:

= is used to assign numerical types and the contents of structures and
arrays.

is is used to assign symbolic types that can only assume a limited set of
values. These types include boolean, char, enumerated types, and references
to structures and arrays. The difference between assigning the contents of

structures and arrays and assigning references to structures and arrays will
be made clear in later sections.

refers to is used to assign reference variables.
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» does is used to assign procedute interface variables (as desctibed in the
chapter on procedures.).

Table 5-1: The Assignment Operators

Data Type Assignment
Operator
boolean, char is
short, byte, integer, long =

scalar, double, complex, vector =
enumerated type is

structure, subject, array contents =

structure, subject, array is
reference
variable reference refers to
procedure interface variable does

Note that the assignment operator used in the assignment statement is the same
symbol that is used as the relational operator to test for equality. This is not a
problem because the context determines which operation to perform. If the =
sign appears in the context of a statement, then it is compiled as an assignment
operator. If the = sign appears in the context of an expression, then it is
compiled as an equality operatort.

Assignments may be made to any type of variable provided that the type of the
variable and the type of the expression are the same and that the vatiable is
not a constant or final variable. Note that structured types such as arrays may
be assigned as a unit or tested for equality as a unit using the = operator. This
is similar to how it is done in C or Pascal, but different from Java, where the
clone and equals methods must be invoked.

Expressions

Expressions are formed by evaluating a sequence of operators or functions and
their operands to yield some value as a result. The types of the operands are
checked to make sure that they match the operators and functions that are used.
The functions (question procedures) may be built-in functions or user-defined
functions.

The order in which the operators are applied depends upon the rules of prece-
dence. Operators with the highest precedence will be applied first, followed by
operators of lower precedence. Operators of the same precedence will be applied
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from left to right in the order that they appear in the expression. The precedence
rules can always be overridden by adding parentheses around the expressions
that are to be evaluated first.

Example: Operator Precedence in Expressions

2<3<4 % 5 =(2<3)an (3 < (4%5)) = true
4*543%3 = (4%5) + (3*3) =29
sqrt 4 + 12 =(sqrt4) + 12 =14
4¥2 A2 =4%(272) =16
true or false and true = true or (false and true) = true
<001>dot<111>cross<100> =<001>dot(<111>cross<010>) =1

Table 5-2: Operator Precedence

Operators Are Listed In Order From Highest
Precedence (Top) To Lowest Precedence (Bottom)
- (Unary), not

A

cross, parallel, perpendicular

dot
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* [, div, mod, and
+, -, or

=, <> L, >, <=5, >=

Compact Expressions
Occasionally, in expressions, you find that you need to test a particular value
against a number of different expressions. The syntax used in this type of
situation can be made more compact and readable if you remember what the
left-hand side of each expression is and then when you encounter successive
clauses in the exptession, if you don't find a new left-hand-side expression, you
assume that the previous one was intended.

For example, in English, instead of saying “are the clothes clean and are the
clothes dry and are the clothes pressed or are the clothes new or are the clothes
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unworn”, it would be easier to say “are the clothes clean and dry and pressed
or new or unworn’.

Example: Compact Expressions

integera, b, ¢;
thing type thing, last; // Note: the "thing" type is a just a dummy type used in examples.

ifa >banda < cthen
end;

whtile thing isn't none and thing isn't last do
end;

// The above expressions can be replaced by the following:

ifa > band < cthen
end;

while thing isn't none and isn't last do
end;

Pronouns: its and itself
To help make code more readable, OMAR provides two pronouns, itself and its.

* Use itself to refer to whatever the previous expression referred to. You can
often use itself in place of the C++ and Java operators, +=, -=, *= and /=.

* Use its with structures (which will be introduced in a later chapter) to refer
to a field of whatever structure was in the previous expression (assuming
that the previous expression referred to a structure).

Example: Using OMAR Pronouns, it and itself

struct chain has
chain type next is none;
end; // chain

integer i = 1, iterations = 0;
boolean parity is false;
chain type chain;

while some chain do
i = itself * 2;
iterations = itself + 1;
parity is not itself;
chain is its next;

end;

Short-Circuit Expressions

Normally, all of the terms in an expression must be evaluated in order to
determine the result. If the expression involves the operators and and or,

however, the value of the expression is sometimes determined by the first
operand alone, so the second operand need not be evaluated.
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For example, in any expression (a and b), if a is false, then the expression as a
whole must be false no matter what the value of b is, so you don’t need to
evaluate b. In the case of an Or expression, (a or b), if a is true, then the
expression as a whole must be true, so you needn’t evaluate b. This is called
short-circnit evaluation.

There are two main reasons why it is useful for short-circuit evaluation to occur.
The first reason is that it can make code faster. If the expressions are complex,
then it will take more time to evaluate both operands than it will to test after
the first operand is evaluated and potentially drop out. The second and more
important reason for short-circuit evaluation is that you can write expressions
where the later terms can only be evaluated without causing an error if the
earlier terms check out first. You could restructure this kind of an expression
using if-then statements to avoid evaluating the later terms but this makes the
code less readable.

For example, the following expression could cause an error if short-circuit
evaluation 1s not used, because if the first test fails, then the second test cannot
be evaluated without causing an error.

@)
Z
>
=
@b
2
o
3
o
=
@

Example: Code Requiring Short-Circuit Evaluation

integera=0,b=1;

// 1f short-circuit evaluation is not used, this could cause an error because
// sart(a) can not be calculated whena = 0

if a > 0 and sqrt(a) > b then
b = sqrt(a);
end;

The code in the example could be restructured by separating the two and
operands of the expression into two if statements, so the second exptession
won’t be evaluated if the eatlier test fails. For example:

Example: Short-Circuit Evaluation Using Nested Ifs
integera =0, b;

ifa > 0 then
if sqrt(a) > b then
b = sqrt(a);
end;
end;

In OMAR, as in most other programming languages, short-circuit evaluation

occurs by default. However, you can also choose to disable short-circuit evalu-
ation and force all elements of an expression to be evaluated. You may need
to do so when you have an expression that makes a series of procedure calls,
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and it is important that every procedure call is made. To disable short-circuit
evaluation, use the operators and if and or if in place of and and or.

Example: Disabling Short-Circuit Evaluation

integera=0,b=1;

ifa>0andifa>bthen
b = sart(a);
end;

Conditional Statements

One of the most basic things that a computer can do is test for some condition
and take a different course of action depending on the outcome. We human
beings do this all the time. For example, if a door is not open, then you open
it and go in, otherwise, you just go in.

Frequently, conditionals are nested in a complex sequence. If the door is not
open, then knock; if someone answers, then go in, else go away. Otherwise, if
the door is open, peek in and see if there’s anyone around, etc. This set of
conditionals can be represented as a decision tree (as in the figure below), with
the conditions placed in ovals, and the statements placed in rectangles.

Figure 5-2: A Decision Tree

is the door
open?

peek inside! knock.

somebody
answers?

go inside! go away!

If Statements

The most basic form of conditional 1s the if-then statement. The if-then
statement relies upon solving a boolean expression that determines whether or
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not a certain action is taken. If the boolean expression evaluates to true, then
the statements are executed. If the boolean expression evaluates to false, then
nothing happens and the computer goes on to the next statement. The basic
form of the if-then statement is as follows:

Figure 5-3: The If-Then Statement

if <boolean expression> then
<declarations>
<statements>

end;

Example: If-Then Statement
scalard=sqrb-4*a*c;

if d < 0 then
write “no roots found”, ;
end;

A more complex form of the if statement is the if-then-else statement. This
statement works by deciding upon one of two possible courses of action based
on the value of the boolean expression. If the boolean expression evaluates
to true, then the first block of statements is executed, else, the second block
of statements is executed. The form of the if-then-else statement is as follows:
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Figure 5-4: The If-Then-Else Statement

if <boolean expression> then
<declarations1>
<statements1>

else
<declarations2>
<statements2>

end;

Example: The If-Then-Else Statement
scalard=sqrb-4*a*c;

if d < 0 then
write “no roots found”, ;

scalar rootl = (-b +d) /(2 *a), root2 = (-b- d) / (2 * a);
; write “roots =", rootd, *, ", root2, ;
end;

else

Another useful form of the if statement is used when you want to perform a
series of tests and execute some statements as soon as you find a condition
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that evaluates to true, otherwise, keep testing. This statement is called the if-
then-elseif statement. The form of this statement is as follows:

Figure 5-5: The If-Then-Elseif Statement

if <boolean expression1> then
<declarations1>
<statements1>

elseif <boolean expression2> then
<declarations2>
<statements2>

elseif <boolean expressionN> then
<declarationsN>
<statementsN>

end;

Note that since this statement continues testing until either a true condition is
found or it reaches the end, it is a good idea to place conditions that are likely
to be true at the top of the statement so they are reached first to avoid a lot
of unnecessaty testing.

Example: The If-Then-Elseif Statement
scalard=sqrb-4*a*c;

if d < 0 then

write “no roots found”, ;
elseif d = 0 then

scalar root =-b/ (2 * a);

write “root =", root, ;
end;

The last possible form of the if statement is created by fitting an else clause
onto the end of an if-then-elseif statement. This is useful when you want to
perform a series of tests, and if none of the conditions are true, then some
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default set of statements should be executed. This is the if-then-elseif-else
statement, which is illustrated below:

Figure 5-6: The If-Then-Elseif-Else Statement

if <boolean expression1> then
<declarations1>
<statements1>

elseif <boolean expression2> then
<declarations2>
<statements2>

elseif <boolean expressionN> then
<declarationsN>
<statementsN>

else
<declarations>
<statements>

end;

Example: The If-Then-Elseif-Else Statement

scalard=sqrb-4*a*c;

if d < 0 then
write "no roots found”, ;
elseif d = 0 then
scalar root = -b / (2 * a);
write “root =", root, ;
else
scalar rootl = (-b + d) /(2 *a), root2 = (-b - d) / (2 * a);
’ write “roots =", rootd, *, ", root2, ;
end;

The When Statement

The other form of conditional statement is the when statement. The when
statement is like the if statement, but instead of using a boolean value to
determine what action to take, it uses an enumerated type or char type to

determine a course of action.

OMAR’s when statement is very similar to C and Java’s case statements, except
that the syntax is a little different, and the when statement can only use enum
and char types, and no integer types. Note that it doesn’t make as much sense
to use an integer or scalar to switch on because they (conceptually) have an
infinite number of possible states. The only types which have a fixed number
of states are the boolean, the enumerated type, and the char.
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When statements evaluate the expression and, based on the value of the result,
go to the proper case, and execute the statements. The order of the cases inside
the when statement doesn’t matter.

Figure 5-7: The When statement

when <char or enum expression> is

<valuel>:
<declarations1>
<statements1>

end;

<value2>:
<declarations2>
<statements2>

end;

<valueN>:
<declarationsN>
<statementsN>
end;
end;

Example: The When Statement

enum situation is fire, flood, tornado;
situation type situation is tornado;

when situation is
fire:
write “drop!”, ;
end;
flood:
write “swim!”, ;
end;
tornado:
write “run
end;
end; // case

1.
i

If, during the execution of the program, the expression takes on a value that
is not listed under any of the cases, then this causes an error. To avoid this
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problem, the when statement can be fitted with an else clause so all possible
values of the expression can be handled.

Figure 5-8: The When-Else Statement

when <expression> is

<valuel>:
<declarations1>
<statements1>

end;

<value2>:
<declarations1>
<statements2>

end;

<valueN>:
<declarationsN>
<statementsN>
end;
else
<declarations>
<statements>
end;
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Example: The When-Else Statement

enum siuation is fire, flood, tornado, nuke_strike, alien_attack, meteor_impact;
sitauation type situation is tornado;

in case situation of
fire:
write “drop!”, ;
end;
flood:
write “swim!”, ;
end;
tornado:
write “run!”, ;
end;
else
write “pray!”, ;
end; // case

Looping Statements

Probably the most powerful construct in computer programming is the loop.
A loop is a means of repeatedly executing some action. Without the loop, most
computers would run through all of the instructions in their memory in just a
few seconds. Looping structures enable the program to do something a fixed
number of times or until a certain condition is satisfied.
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The While Statement

The while statement is used to execute a sequence of statements repeatedly, as
long as a particular condition holds true. It is used whenever you don’t know
how many times the loop will have to be executed. This kind of loop is used
for things like: while not finished, do task; while no character has been found,
read keyboard, etc. The condition is tested for at the beginning of the loop,
before any statements are executed, so it is possible for the statements not to
be executed at all.

Figure 5-9: The While Statement

while <boolean expression> do
<declarations>
<statements>

end;

Example: The While Statement

integer i = 2, counter = 1;

write "powers of 2 less than 1000:", ;
while (i < 1000) do

write "2 A", counter, " =", i, ;

i = itself * 2;

counter = itself + 1;
end;

Note that it is possible for the condition of the while loop to never evaluate
to false. In this case, the loop will (theoretically) never terminate. This condition
is known as an zufinite logp. In general, you should avoid infinite loops, but there
are certain situations in which they are commonly used, such as in anims, the
graphics animation procedures.

Example: An Infinite Loop

while true do
write “help!”, ;
end;

The For Statement

The for statement is used whenever you want to execute the statements of a
loop a fixed number of times. The for statement is useful when you want to
do things like perform some action for each element in an array. The variable
that is used to count the number of iterations in the loop must be of an integral
type and may be used by expressions inside of the loop, but its value may not
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be changed. The loop counter variable is implicitly a constant. The start
expression and end expression must also evaluate to an integer.

Figure 5-10: The For Statement

for <type> <counter> <assignment_operator>
<start expression> .. <end expression>
do
<declarations>
<statements>
end;

Example: The For Statement
long factorial = 1, limit = 5;

for integer counter = 1 .. limit do
factorial = itself * counter;

end;

write limit, " factorial = ", factorial, ;

The loop always counts in an increasing direction and always increments the
counter variable by 1 each time through the loop. If you want a step size

other than 1, or a loop in which the counter decreases, then use a while loop
instead. If the start expression evaluates to the end expression, then the loop
is executed only once. If the start expression evaluates to a value that is greater
than the end expression, then the statements in the loop are not executed at all.
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Example: For Loop Using an Enumerated Counter

enum animal is cat, dog, cow, pig, sheep;

for animal type animal is cat .. sheep do /[ Enumerated for loop
when animal is
cat: write "meow", ; end;
dog: write "woof", ; end;
cow: write "moo", ; end;
pig: write "oink", ; end;
sheep: write "baa’, ; end;
end;
end;

For-Loop Counter Protection
For loops in OMAR are different than for loops in C, Pascal, or Java for two

reasons:

e The first, and most important difference is that the loop counter variable
in OMAR is protected. Inside of the body of the for loop, the loop counter
is considered a constant and therefore you can use its value in expressions,
but you may not change it. The value of a loop counter is controlled
automatically by the loop and you may not interfere with it by trying to
change its value yourself.
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* The second difference between for loops in OMAR and in other languages
is that the counter variable used in the loop only exists inside of the loop
statement. /s soon as the loop statement terminates, this variable disappears
and may not be used for something else.

Example: For-Loop Counter Protection

for integer counter =1 .. 10 do

write "counter =", counter, ; // Ok - you may use the value of the for counter
: counter = itself + 1; // Compile error - you may not change the loop counter
end;
write “counter =", counter, ; // Compile error - you may not use the value of the for counter

// outside of the loop

The For-Each Statement

The for-each statement is a special for statement that is used for operating on
arrays. You can use this statement to automatically iterate through the elements
of an array.

Automating this process has two benefits. First, it is more convenient for the
programmer and produces more readable code. Second, it allows a smart
compiler to produce faster code by using pointer arithmetic to efficiently step
through the elements of the array without having to do a full array dereferencing
and bounds checking operations on each array access of each iteration.

In order to use a for-each loop, you need an index variable that is used to
reference the current element of the array that you are stepping through. The
index variable, like the counter variable in a for loop, is considered a constant
and may not be changed by the statements inside of the loop.

Figure 5-11: The For-Each Statement

for each <type> <index> in <array>do
<declarations>
<statements>

end;
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Example: The For-Each Statement
char name[] = "Freida Froglegs";

for each char chinnamedo  // Implicitly finds min and max of array
write ch; // Implicit array dereference

end;
/[ The example code above is equivalent to the following:

char name[] = "Freida Froglegs";

for integer counter = min name .. max name do // Explicit references to the array min and max
write name[counter]; // Array dereference and bounds check

end;

The for-each statement can also be used with multidimensional arrays. When
iterating through a multidimensional array, the loop accesses the elements in
row major order, meaning that it begins with the first element of the first row,
and continues until it reaches the end of that row, and then goes on to the
next row until it has reached the last element of the last row.

Example: The For-Each Statement & Multidimensional Arrays
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integer table[,] = [[174 2] [36 4 6] [2549]];

for each integer i in table do
write"i=",i,;
end;

% The multidimensional example above is equivalent to the following:
integer table[,] = [[1742][3646][2549]];

for integer counterl = min table .. max table do
for integer counter2 = min table[] .. max table[] do
write "i = ", table[counterl, counter2], ; // multidimensional array dereference
end; // and bounds check

end;

The Break and Continue Statements
The break and continue statements make it easier to control the flow of
execution in a looping statement. These statements can only be used inside of
a for or while loop. Whenever a break statement is encountered, the flow of
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control is transferred out of the innermost loop that encloses the break
statement.

Example: The Break Statement

char name[] = "Fred Frogburger";

// Write out the first name only:
for each char ch in name do
if chis" " then
break;
end;
write ch;
end;

The continue statement is used whenever you want to skip the remaining portion
of the current iteration of the loop and jump directly to the top of the loop
for the next iteration.

Example: The Continue Statement

char name[] = "Fred Frogburger";

// Write out the first and last name with no spaces in between:
for each char ch in name do
if chis" " then
continue;
end;
write ch;
end;

The break and continue statements may also work with nested loops. When
you want to break or continue a loop that is not the innermost loop containing
the break or continue statement, you need to specify the designated loop with
a label. Then you specify the intended loop to break or continue by stating the
name of the label immediately following the break or continue statement. A
label is formed by stating the keyword loop, followed by an identifier and a
colon. For example:

Example: The Labelled Break Statement
integeri[,]=[[1742][3646][2549]];

loop outer:
for integer counterl = min i .. max i do
for integer counter2 = min i[] .. max i[] do
if i[counterl, counter2] = 5 then
break outer;
end;
write "i[", counterl, ", " counter2, "] =", i[counter1,counter2], ;
end;
end;
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The Return Statement

The return statement is a lot like the break statement, except that it is used to
transfer control out of an entire verb procedure. To exit from a question
procedure, you must use an answer statement as described in the chapter on

procedures.

Example: The Return Statement

verb write_up_to_space
_ char name[];
is
// Write out characters until a space is found

I/

for each char ch in name do
if chis" " then

return;

end;
write ch;

end;

end; // write_up_to_space

The Exit Statement

The exit statement is used to exit from a program entirely. Exit statements
are very often used to end a program when errors or invalid data are encoun-
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tered.

Example: The Exit Statement

scalar number = 0.49, root;

// Much later in the program, "number" gets used, but its value is uncertain, so it is checked to be valid.

if number < 0 then exit;
else root = sqrt number; end;

Some Example Programs
The following example programs demonstrate how several different kinds of

statements can be used.
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Listing 5-1: Program To Write Qut Roman Numerals For Powers of 2 < 5000

do Arabic_to_Roman;

verb Arabic_to_Roman is
integer x, y;

y=1
while (y < 5000) do
writey, " %
X=Y;
while (x >= 1000) do write "M"; x = itself - 1000; end;
if (x >= 500) then write "D"; x = itself - 500; end;
while (x >= 100) do write "C"; x = itself - 100; end,;
if (x >= 50) then write "L"; x = itself - 50; end;
while (x >= 10) do write “X"; x = itself - 10; end;
if (x >=5) then write "V"; x = itself - 5; end;
while (x >= 1) do write "I"; x = itself - 1; end;
write;
y = itself * 2;
end;
end; // Arabic_to_Roman

Listing 5-2: Program to Convert Roman Numerals to Arabic Numerals

do Roman_to_Arabic;

verb Roman_to_Arabic is
char roman[];
integer arabic = 0;

roman = "MDCCCCLXXXXVIIII";
for each char c in roman do
when cis
"M"; arabic = itself + 1000; end;
“D": arabic = itself + 500; end;
"C"; arabic = itself + 100; end;
"["; arabic = itself + 50; end;
"X"; arabic = itself + 10; end;
"\/"; arabic = itself + 5; end;
"I"; arabic = itself + 1; end;
else
write "error", ;
exit;
end;
end;

write "Roman =", roman, ;
write "Arabic =", arabic, ;
end; // Roman_to_Arabic
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CHAPTER 6
Procedures

In order to solve any complex problem, you must find ways of breaking down
the task into manageable units. This philosophy is exploited tirelessly in science
and computers. The idea is often illustrated by visualizing each component of
the solution as a black box, where you know what goes into the box and what
comes out but have no knowledge of what goes on inside. Ideally, you should
have no need to know what goes on inside the black box.

In terms of computer programming, this means you should be able to use a
piece of code without knowing how it works internally, just as you can drive a
car without knowing exactly how an engine works. This is why procedures atre
such a powerful tool—they are the black boxes of a program.

The Concept of Scoping

Just as an engine has a number of internal parts that are necessary for it to
wortk but are not used by any other parts of the car, a procedure can also have
its own data, data types, and even its own procedures that are not accessible
to the rest of the program.

If something is accessible from a particular place in the program, then we say
that it is »isible. All the things that are visible to a procedure comprise the scpe
of the procedure. Visibility is determined by the textual arrangement of the
program. Fach time you begin a new procedure, you can declare new things
that are not visible to the rest of the program. These things are referred to as
local because they can only be accessed within that procedure. Anything that is
declared outside of any procedure is referred to as global/ because it can be
accessed from anywhere in the program after its declaration.
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In addition to the things in its own local scope, a procedure can also have
access to things that are declared in the scopes that enclose itself. If two variables
with the same name but from different scopes are visible, then the one with
the closer scope takes precedence, and the others are invisible. Usually, proce-
dures are not nested, so they have access only to their own scope and to the
global scope.

Figure 6-1: Procedures Can Access Things in Their Own Scope or an Enclosing Scope

doa, b;

// Global scope:

integeri=1;

verb a is // Beginning scope of a — scopes visible: global scope, scope of a
// Declarations in a:
integer j;

// Statements in a:
1=
end; // Ending scope of a
verb b is // Beginning scope of b — scopes visible: global scope, scope of b (but not a)
// Declarations in b:
integer k;

verb c is // Beginning scope of c—scopes visible: global scope, scopes of b and ¢ (but not a)
// Declarations in c:
integer m;

// Statements in c:
m=i;
k=m;
end; // Ending scope of ¢

// Statements in b:

end; ' // Ending scope of b

Verbs

Verbs are procedures that are called upon to do a particular subtask. There are
two parts to using verbs.

First, the procedure must be declared. The declaration tells what the procedure
does, how it is supposed to do it, and how to call the procedure. In the black

box analogy, the body of the procedure declaration specifies what is inside the
black box.

Once the procedure is declared, it may be called anywhere where statements
are allowed and the procedure’s name is in a visible scope. To call a simple

verb, all you have to do is state the name of the verb. Calling a procedure is
like taking the procedure’s code and inserting it wherever the procedure call is
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made. This makes code with procedures more compact than it would be without
procedures, because you can call the same procedure many different places.
Instead of having multiple copies of the code, you can reuse the same snippet
of code multiple times.

Figure 6-2: Vlerb Declaration

verb <verb name> is
<declarations>
<statements>
end;

Figure 6-3: Basic Verb Procedure Call

<verb name> ;

Listing 6-1: Using Verbs to Calculate Averages

do averages;
integer n1, n2;
verb write_average is

integer sum;  // Local intermediate variables
scalar average;
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sum =nl + n2;

average = sum/ 2;

write "average = ", average, ;
end; // write_average

verb averages is

nl = 10;

n2 =30;

write_average; // Procedure call
nl = 15;

=7

write_average; // Procedure call
end; // averages

Questions

Often, procedures are used to do a small part of a larger calculation. In these
instances, it is desirable to have the procedure return a value that can be used
as part of an expression. In OMAR, this type of procedure is known as a
guestion. Because they resemble mathematical functions, question procedures are
also sometimes called functions.

Question declarations are similar to verb declarations except that you must
precede the declaration with the name of the type of data to return. Also, inside
of the body of a question declaration you must include an answer statement, which
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tells the procedure to end and return a value to the caller. Every question must
terminate with an answer.

Figure 6-4: Question Declaration

<return type> question <function name>
is

<declarations>

<statements (including an answer statement)>
end;

In order to call a question, you must state the name of the question in a place
where an expression is called for. Since verb calls go in places where statements
go, think of verbs as statements. Questions go where expressions go, so they
should be thought of as expressions.

Listing 6-2: Using Questions to Calculate Averages

do averages;
integer n1, n2;

scalar question average is
answer (nl +n2) / 2; // An answer statement
end; // average

verb averages is
nl =10;
n2 = 30;
write "average = ", average, ; /| Procedure call

nl =15;

n=7;

write "average = ", average, ; /| Procedure call
end; // averages

The answer statement in a question must include an expression of the same
data type as the type that is returned by the question. The last statement in a
question must be either an answer statement, or a conditional statement where
all conditions end in an answer statement. In this way, the compiler guarantees
that a value is returned before the question terminates.

Example: A Question Ending with a Conditional Statement

scalar question factorial
of integer n;
is
if n = 1 then
answer 1;
else
answer n * factorial of (n - 1);
end;
end; // factorial
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Parameters

You have seen how to break the program down into manageable parts with
procedures. What is needed is a way for all of these individual pieces to be
neatly connected so that the pieces are independent but work together. Param-
eters form the programming glue that is needed to piece together all of the
procedutes into a cohesive whole. They are the means by which the various
parts of the program are interconnected.

The Problem with Global Variables

The black box analogy of program structure assumes that there is some way to
get the data into the black box and out of the black box. In the previous
examples, we used global variables to communicate with the procedure.
Although this works fine, it is not considered good programming style because
you can’t tell how to interface with the procedure simply by looking at the
header of the procedure. Instead you must actually examine the code to see
how it works.

In addition, the procedure relies on the existence of the global data which

means that the procedure can’t stand alone as its own unit. This violates the
primary objective of black boxes, which is the encapsulation of functionality.
What is needed is a clean way to specify the interface with the procedures.
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Figure 6-5: The Procedure Interface

back door
(global variables)

] (parameters)
calling called

procedure < > procedure

The Procedure Interface: Parameters
The solution to the problem is to specify a way to send values to the procedure
and receive values back to the main program. This is done with parameters.
Parameters are simply variables that belong to the procedure which can be
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changed each time the procedure is called. Parameters are declared immediately
after the procedure name and before the local declarations.

Figure 6-6: Procedure Declaration with Parameters

verb <procedure name>
<mandatory parameter declarations>
) <keyword parameter declarations (mandatory or optional)>
wit
<optional parameter declarations>
return
) <formatted optional return parameter declarations>
wit
~ <unformatted optional return parameter declarations>
is
<declarations>
<statements>
end;

The Different Kinds of Parameters

In OMAR, there are six different kinds of parameters that procedures can use:

Table 6-1: The Six Kinds of Parameters

mandatory mandatory-keyword reference

optional optional-keyword optional return

Since parameters of differing kinds may be mixed together in the same procedure
declaration, the calling syntax can be made as natural and expressive as possible.
At first it may seem that there are a bewildering number of choices in deciding
how to create the procedure interface. Actually, though, in order to decide on
what kind of parameter to use, you must ask yourself only three questions:

Question #1: Must the data be returned from the procedure?
The parameter is like an access road to the procedure. Sometimes, you only
need a one way street, with data going into the procedure, but not returning.
In other circumstances, however, you need a two way street where data can be
passed into and returned from the procedure. In still other cases, the caller may
want the option of retrieving extra data from the procedure—data that it did
not initially pass in.

Question #2: Are there appropriate default values for the
parameter?
In many cases, there are logical default values for parameters to have. For
example, it’s natural for a sphere to have a default radius of 1. Another example
might be to define a car object with doors that open and close depending upon
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the value of a parameter. Since it’s logical to have the doors default to the
closed position, this is a good choice for an optional parameter.

Question #3: Is the parameter usually used in a context preceded

by keywords?
In some cases, the procedure call can be stated very naturally in an English-like
way by relying on the fact that the values of certain parameters are often
preceded by certain keywords. For example, if you want to create an arrow, it’s
natural to say arrow from <here> to <there> where the values of the endpoints
of the arrow ate determined by the keywords from and to. When you call the
procedure, you expect to find the values of the endpoints in the places that are
indicated by the keywords from and to.

Table 6-2: Selecting Parameter Usage

must values be returned from the procedure?

yes no
- o -
can variable be specified by keywords? 3
0
o
yes no =9
must values come from 3
? - - o
the caller? does variable have does variable have »
appropriate appropriate
defaults? defaults?
yes no yes no yes no
use use use
use . . use use
optional optional mandator -
reference optional mandator
return keyword | y keyword
parame- parame- | y parame-
parame- parame- parame-
ters ters ters
ters ters ters

Mandatory Parameters

As their name implies, mandatory parameters are parameters that must be

supplied to the procedure. An example of mandatory parameters is the parameter
that is used by the math function, sin. To call the sin function, you must supply
a scalar value immediately following the name of the function. If no value is

supplied, an error message is issued. Mandatory parameters should be used
whenever there is no logical choice for default values for the parametets.

Mandatory Parameters
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Declaration of Mandatory Parameters

Mandatory parameters are specified in the procedure declaration by listing their
declarations immediately following the name of the procedure. There is no limit
to the number of parameters that may be declared.

Assignment of Mandatory Parameters

When a procedure that uses mandatory parameters is called, a list of expressions
is expected following the name of the procedure. The expressions must evaluate
to the proper type to be assigned to the parameters that they match.

Example: Calling a Question with Mandatory Parameters

scalar question average
integer a, b;
is
answer (a +b)/2;
end; // average

scalar a;
a = average 30 40;

a = average (round 3.5) 40;
a = average -10 40;

a = average 30.5; // Compile Error! — .5 is not an integer
a = average (sqrt 10) 40;  // Compile Error! — (sqrt 10) is not an integer
a = average 30 40 15; // Compile Error! — too many parameters

Listing 6-3: Using Questions with Parameters to Calculate Averages

do averages;

scalar question average
_ integernl, n2;
is
answer (n1+n2)/2;
end; // average

verb averages is
write "average = ", average 10 30, ;
write "average = ", average 157, ;
end; // averages

Optional Parameters

Optional parameters are useful when it is not always necessary to specify all of
the parameters. In these cases, logical default values can be specified for the
parameters that are not specified in the actual procedure call.

When you use optional parameters, you need a method of specifying which of
the parameters to assign. For the mandatory parameters, you simply match the
parameters by order since the number of parameters always equals the number
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of expressions. Since the number of optional parameters may not be equal to
the number of assignments, we can’t match them by order. Instead we use the
names of the parameters to match them with expressions and assign the param-
eters values just like a simple assignment statement.

Declaration of Optional Parameters

To signify the beginning of the optional parameters section, add the keyword
with at the end of the mandatoty parameters section followed by the variable
declarations of the optional parameters.

Figure 6-7: Procedure Declaration with Optional Parameters

verb <procedure name> with
_ <optional param declarations>
is
<declarations>
<statements>
end;

Assignment of Optional Parameters
Optional parameters are assigned slightly differently for verbs and questions.
This is because a verb call acts as a statement, while a question call acts as
an expression.
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When calling a verb, optional parameters are assigned by following the name

of the procedure by the keyword with and then listing any number of
assignment statements until the keyword end is given.

Figure 6-8: A Verb Call with Optional Parameters

<verb name> with
<assignment statements>
end;

When calling a question, optional parameters are assigned just as they are for
vetb calls, except that the keyword end is not used. This syntax may at first
appear a little confusing because it requires that assignment statements (complete
with ending semi-colons) appear in the middle of an expression. For that reason,
it is a good idea to surround question calls that use optional parameters with
parentheses.

Figure 6-9: A Question Call with Optional Parameters

<variable> = (<question name> with <assignment statements>);

The assignment statements that occur in the assignment block are executed after
the optional parameters have been created and initialized. It is as if the assign-
ments were occurring at the point of the is in the procedure declaration, right
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before the body of the procedure begins. Because the assignments occur in the
context of the procedure declaration, types that are defined in the optional
parameters section of the procedure declaration are also recognized inside the
with section of the procedure call.

Listing 6-4: Using Optional Parameters with a Verb

do test;

verb init_table
integer table[]; // Mandatory parameter for table (arrays will be discussed in a later chapter)
with
_ integer value =0; // Optional parameter for table contents
is
for integer i = min table .. max table do
table[i] = value;

end;
end; // init_table

verb test is
integer table[1..10];
init_table table; // Fill table with Os (default value)
init_table table with // Fill table with -1s
value = -1;
end;

end; // test

Listing 6-5: Using Optional Parameters with a Question

do test;
include "math.ores";

scalar question arch_area
scalar arch_angle;
with
scalar radius = 1;
boolean in_radians is false;

if in_radians then

| answer (pi * sqr radius) * (arch_angle / (2 * pi));
else

answer (pi * sqr radius) * (arch_angle / 360);
end;
end;

verb test is
scalar area = (arch_area 1.12 with in_radians is true; radius = 2.5;);
write area, ;

end;
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Mandatory Keyword Parameters

Sometimes you want to require that extra words should be inserted into the
procedure call to make the procedure call more readable. These extra words are
known as keyword parameters.

Declaration of Mandatory Keyword Parameters

Mandatory keyword parameters are declared just like the mandatory parameters
except that before the variable declaration comes one or more special identifiers,
which are the keywords. Any identifier can be used as a keyword so long as

it’s not a reserved word. The keywords are used to signify that whenever they
are encountered in the procedure call, the value of the parameter will follow.
Note that the mandatory parameter declarations do not have initializers because
initial values are guaranteed to be furnished when the procedure is called.

Assignment of Mandatory Keyword Parameters

To assign values to keyword parameters, state the keyword followed by an
expression that can be evaluated to provide a value for that keyword. If the
parameters are mandatory, then the parameter values and their corresponding
keywords must be given in the same order as in the declaration. No mandatory
parameter values may be omitted from the procedure call.

Listing 6-6: Mandatory Keyword Parameters

-
-
=}
0
[
o
c
=
1]
v

do test;

verb init_table

integer table[]; /[ Mandatory parameter for table
_ tointeger value; // Mandatory keyword parameter for table contents (no default)
is

for integer i = min table .. max table do

table[i] = value;

end;

end; // init_table

verb test is
integer table[1..10];
init_table; // Compile error - procedure call must include the mandatory
/[ keyword followed by the parameter's value (no default value)
init_table table to 0; // Fill table with Os
init_table table to -1; // Fill table with -1s
end; // test
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Optional Keyword Parameters

In some cases, it is desirable to use keywords in the procedure call but not to
require all the parameters to be given. In this case, you can use the presence
of the keyword to signify that you wish to assign the parameter and provide its
value in the expression that follows. Any optional keywozrds that are not present
in the procedure call do not have their parameter values assigned. Since it is

possible that optional keyword parameters are not assigned in the procedure

call, they must always have default values.

Declaration of optional keyword parameters

Optional keyword parameters are declared just like the mandatory keyword
parameters except that they are given initializers. Optional keyword parameters
are declared by giving the keyword followed by the variable declaration followed
by the initializer.

Assignment of optional keyword parameters

The optional keyword parameters are assigned like the mandatory keyword
parameters except that the order that the keywords and parameter values come
in is flexible and any or all of the parameter assignments may be omitted.

Listing 6-7: Assigning Optional Keyword Parameters

do test;

verb init_table
integer table(]; // Mandatory parameter for table
to integer value = 0; // Optional keyword parameter for table contents (with default)

is

for integer i = min table .. max table do
table[i] = value;

end;
end; // init_table

verb test is
integer table[1..10];
init_table table; // Fill table with Os (the default value)
init_table table to 0; // Fill table with 0s

init_table table to -1; // Fill table with -1s

end; // test
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Reference Parameters

It is sometimes necessary to return data from a procedure. This is most easily
done using reference parameters. Reference parameters in OMAR are similar to
reference parameters in C++ or var parameters in Pascal. Note that Java has
no analogue to reference parameters, since Java has no generalized reference or
pointer data type.

Declaration of Reference Parameters

Reference parameters are declared just like mandatory parameters except that
the reserved word reference precedes the parameter name. When you do this,
the parameter becomes a two way link to the variable that is passed in, so any
changes that are made to the parameter will be reflected in the variable passed
in when the procedure is finished executing.

Assignment of Reference Parameters

Reference parameters are also assigned similarly to mandatory parameters, with
the parameter values immediately following the procedure name. One slight
difference between reference parameters and mandatory parameters is that a
variable must be passed in to the reference parameter instead of an expression.

For example, let’s say we have a procedure named increment that takes an
integer reference parameter and adds 1 to its value. In this case, the procedure
call increment a; would be valid assuming that a is an integer variable. The
procedure call increment (a + 1);, howevet, would not be valid because
increment needs the name of a variable to place the returned value and a + 1
is not a variable.

Listing 6-8: Use of Reference Parameters

do test;

verb swap
integer reference i;
integer reference j;
integer k = i;
[

B
i=k
end; // swap

verb test is
integera=1,b=2;

write"a,b=",3,", ", b, ;
swap a b; // Note that the values of a and b will be changed
write"a,b=",3,", ", b, ;

end; // test
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Optional Return Parameters

Sometimes, procedures may be called upon to perform some action and then
optionally return some parameters that report the status of the operation. This
is done using optional return parameters. When you use optional return param-
eters, it is left up to the individual procedure call to specify which parameters
get returned, if any. A common thing to do is to have the procedure report
whether it was successful in the operation, or if there was some sort of error.
In this case, it is up to the caller to check whether everything is okay or not.
In some cases, the caller may not care and so it would not call upon the
procedure to return any values.

There are two kinds of optional return parameters, formatted and un-formatted.
The relationship between these two kinds is similar to the relationship between
mandatory and optional input parameters. Mandatory parameters are ‘formatted’
parameters because they always must be listed in the same order when called.
Optional parameters (which appear in With sections) are ‘un-formatted’ patam-
eters because they may used in any order, and furthermore, they needn’t all be
used.

Formatted return parameters, like mandatory parameters, must always be used
in the same order, and if one of them is used, they must all be used. However,
formatted return parameters are still optional—which means that a call to a
procedure that has formatted return parameters need not use them. Un-
formatted return parameters, like other optional parameters, may be used in any
order, and you may select which ones to use.

Declaration of Optional Return Parameters

To signify the beginning of the optional return parameters section, add the
keyword return after any other parameter declarations. Declare any formatted
return parameters immediately after the return keyword. If you declare any un-
formatted teturn patrameters, they should be declared in another with section
after the return keyword.

Neither formatted nor un-formatted return parameters may be declared with an
initializer. This is because values should be assigned to the parameters
somewhere within the procedure, so having default values for these parameters
does not make sense.

Assignment of Optional Return Parameters

Formatted return parameters are returned by following the name of the

procedure by the keyword return and then listing a number of variables to receive
each of the formatted return parameters. Un-formatted return parameters are
attained by following the return section of a procedure call with the keyword
with, followed by a number of assignment statements. The assignment statements
that occur in this block are executed after the body of the procedure has been
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executed. Note that if only un-formatted return parameters are used, the return
keyword must still be used, so the parameters will appear after the keyword
combination of return with.

Un-formatted return parameters are much like ordinary optional parameters but
in reverse. With optional parameters, you assign values from the scope of the
procedure call to the variables inside the procedure. With un-formatted return
parameters, you assign values inside the procedure back out to variables in the
scope of the procedure call.

Un-formatted optional return parameters also follow the same syntax as optional
parameters in that the assignment syntax is different for verb calls and question
calls. In a verb call, the with assignment block is followed by an end keyword.
In question calls, the end keywotd is never used.

Figure 6-10: Procedure Declaration with Optional Return Parameters

verb <procedure name>
<mandatory parameters and keyword parameters (if any)>

with
<optional parameters (if any)>
return =
<formatted optional return parameter declarations> e
with o
_ <unformatted optional return parameter declarations > 3
is o
<declarations> @
<statements>
end;

Listing 6-9: Use of Optional Return Parameters

do averages;

verb average

integer n1, n2;
return

scalar average;
with
_ integersum =0;
is

sum = nl + n2;

average = sum/ 2;
end; // average
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Listing 6-9: Use of Optional Return Parameters (Continued)

verb averages is
integer a;
scalar b;

// Return only the average

average 20 60 return b;
write "average =", b, ;

// Return both the average and the sum

Il
average 10 30 return b Wlth” a = sum, end;

write "sum, average =", a,",", b, ;
end; // averages

Scoping Modifiers
Whenever you begin a new scope while programming, there is a possibility that
you may declare a new variable in the local scope that has the same name as
a variable in an enclosing scope and therefore hides this other variable. This
phenomenon is sometimes known as variable shadowing.

This problem has two possible solutions: First, you can choose to rename the
local variable to avoid the ambiguity altogether. Second, you could precede the
variable name by a scoping modifier in order to bypass the most local scope
and refer to the hidden scope. You can use two scoping modifiers for this
purpose.

Use the first scoping modifier, global, whenever you want to bypass the local
scope and refer to a variable in the global, or outermost scope.

Listing 6-10: The Global Scoping Modlifier

do test;

integeri=5;

verb test is
integer i = 10; // Local i 'shadows' global i
write"i=", i, ; /[ Will write the value 10

write "i =", global i, ; // Will write the value 5
end; // test

You can use the second scoping modifier only in procedure calls when you are
assigning optional or optional return parameters. In this case, the need is to
bypass the scope of the procedure being called (the dynamic scope) and refer
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instead to the context of the place in the program where the procedure call is
made (the static scope). For this, you use the scoping modifier, static.

Listing 6-11: The Static Scoping Modlifier Used with Optional Parameters

do test;
verb write_integer with
integeri = 0;
is
write"i=",i,;
end; // write_integer
verb test is
integeri = 5; // Local i
write_integer with /[ Entering scope of write_integer
i = static i; // Bypass scope of write_integer to get at local i
end; /[ Leaving scope of write_integer
end; // test

Listing 6-12: The Static Scoping Modlifier Used with Optional Return Parameters

do test;

integer question function
return with
boolean error;
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is
error is false;
answer 1066;
end; // do_stuff

verb test is
boolean error; // Local variable

integer i = (function return with // Entering scope of do_stuff
static error is error; // Bypass scope of do_stuff to get at local error
; // Leaving scope of do_stuff
end; // test

User-Defined Types As Parameters

Sometimes you may find that it is convenient to have type declarations that are
local to a certain procedure's declaration, except for being able to access them
in the procedure call. In this sense, these types behave like parameters. To
export a type for use in the procedure call, list the type declaration in the
interface section of the procedure declaration along with the declarations of the
parameters.
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Listing 6-13: Types As Parameters

do greetings;

verb greeting
enum language is English, French, German;
in language type language is English;

is
when language is
English; write "Hello", ; end;
French: write "Bonjour", ; end;
German: write "Guten Tag", ; end;
end;
end; // greeting
verb greetings is
greeting; // The default language is English
greeting in French; // Specify language to be French

end; // greetings

Constants As Parameters

Just as it may be handy to export certain types to be used in a procedure or
procedure call, it may also be convenient to export constants. Note that since
the values of the constants never change, it is not actually necessary to copy
the values of the constants into the local variables as with normal parameters,
so there is no extra cost associated with having the constants be parameters

instead of global constants.

Listing 6-14: Constants As Parameters

do logarithms;
include "math.ores";

scalar question logarithm
const scalar e = 2.71828;
base scalar b = e;
of scalar s;

is
answer Ins/Inb;

end; // logarithm

verb logarithms is
write "log in base e of 100: ", logarithm base e of 100, ;
write "log in base 2 of 100: ", logarithm base 2 of 100, ;
write "log in base 10 of 100: ", logarithm base 10 of 100, ;

write'e=", ¢, ; // Error - the values of constants listed above are only
// available inside of a call to the above question
end; // logarithms
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Final Parameters & Variables

Most types of data are most appropriate as either constants or as variables,
because they are either fixed for all time, or may change at any time during the
program. There are certain cases, however, where you may want a value to be
fixed within the execution of a procedure, but to be able to be changed from
one invocation of the procedure to the next. This is what final parameters and
variables are for.

A final variable is like a constant because it may not be changed within its
scope, but unlike a constant, final vatiables are created anew each time a
procedure or function is called. This allows final variables to have different
values between calls.

Example: Final Parameters & Variables

scalar question average

is

end; // average

final integer table[]; // These values are protected for the
// lifetime of this procedure call
integer sum = 0;
final integer entries = num table; // This value is protected for the
// lifetime of this procedure call

for each integer i in table do
sum = itself + i;
end;

answer sum / entries;

Static Variables

Normally, local variables are created each time you enter a procedure and they
disappear when you leave. There is a special type of local variable, however,

that does not disappear when the procedure terminates. This is called a static
variable. Static variables are similar to global variables, because they always exist,
but are like local variables, because they are only visible within the procedure’s
scope.

Procedure Interface Variables

Variables may be references to other variables, but also may be references to
sections of code. A procedure interface variable lets you specify a procedure
entirely in terms of its interface, and lets you specify the actual implementation
at a later time. Or, you can choose to change the procedure implementation
dynamically as the program runs. This allows a great amount of flexibility in
certain situations.
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Listing 6-15: Use of Static Variables

do test;

verb count is
static integer a = 0;

a=itself + 1;
write"a=",3,;
end; // count

verb test is // This will write out the integers 1 through 10
for integer counter =1 .. 10 do
count;
end;
end; // test

Procedure interfaces are similar to what are called function pointers in languages
such as C or Pascal. The problem with simple function pointers is that normally
in the C language, the function pointers are distinguished only by their return

type and not by the parameters to the function. This lets you attach an imple-

mentation of a function to a function pointer with differing parameters. This
is an error and it causes the software to crash or behave erratically.

For this reason, Java, which is based loosely on C, left this feature out entirely.
If proper type-checking is enforced, however, this feature may be implemented
safely. In OMAR, whenever you attach a procedure implementation to a
procedure interface variable, the compiler checks the parameters and return type
to ensure that this operation is safe. To assign a procedure implementation to
an interface, use the does assignment operator. If no implementation is specified,
then the interface variable is said to refer to none. By default, all procedure
interface variables are initialized to refer to none. If an attempt is made to call
a procedure with no implementation assigned, then a run-time error results.

Example: Using a Verb Procedure Interface Variable

verb actionl is
write "performing action 1", ;
end; // actionl

verb action? is
write "performing action 2", ;
end; // action2

verb action does none; // Verb procedure variable declaration and initializer
if action does none then // Assign actionl or action2 to procedure variable action
| action does actionl; // depending upon whether it has been previously assigned.
else
action does action2;
end;
action; // Call whatever procedure action refers to (in this case, actionl.)
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Example: Using a Question Procedure Interface Variable

integer question add
integer a, b;
is
returna + b;
end; // add

integer question mult
integer a, b;
is
returna * b;
end; // mult

integer question f does none // Question procedure variable declaration and initializer
y integer a, b; // Procedure parameter declarations
end;

if f does none then // Assign add or mult to procedure variable f
| f does add; // depending upon whether it has been previously assigned.
else
f does mult;
end;

write "fof 4and 5 =",f45; // Call whatever procedure action refers to (in this case, add)

Recursion

In some cases, a problem can be more easily solved by a circular, or recursive,
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way of thinking. The way recursive thinking works is to imagine solving a

large problem by breaking into it into pieces and using the same algorithm
used to solve the whole problem on solving the subproblems. This may sound
confusing, but some problems are actually more easily and efficiently solved in
this way.

For example, look at the mathematical function called ‘factorial’. The factorial
function, which is denoted by an exclamation point, I’
and is defined as the product of all the positive integers from 1 up to the

argument. The factorial of 6 would be 6! =1 * 2 * 3 * 4 * 5% ¢ = 720. The
recursive way to think of this problem is to say that 6! = 5! * 6. For any number,
N, NI' = (N - )l * N except for 1, where 1! = 1. To solve the problem, instead

of writing a loop to multiply all the numbers, you can simply call the function

, takes an integer argument

with an argument of 1 less than the argument that was passed in and multiply
the result times the argument.

This particular case is presented because it is relatively easy to understand, but
the factorial operation could actually be more efficiently coded in the conven-
tional way. With other problems, this is not the case. One important thing to
remember is that the recursion must eventually stop. In the example above, the
factorial function is no longer called when you get to the number 1. If you
didn’t specify that the recursion should stop at 1, then you would have what is
known as infinite recursion. In theory, the program would continue forever but
in practice, this causes an error because each time the procedure is called, some
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Listing 6-16: Recursively Defined Factorial Function

do write_factorials;

scalar question factorial
of integer n;
is
if n = 1 then
answer 1;
else
answer n * factorial of (n - 1);
end;
end; // factorial

verb write_factorials is
for integer counter =1 .. 10 do
write "factorial of", counter, " =", factorial of counter, ;
end;
end; // wFite_factoriaIs

memory is used up and therefore, the infinite recursion causes the program to
run out of memory at some point.

Any type of procedure may be recursive. The factorial function above is an
example of a recursive question. Recursive verbs are often used to solve sorting
problems. They work by breaking a list into two small lists, recursively calling
the sorting procedure of the smaller lists, and then merging the two small sorted
lists into one big sorted list.

Recursion is also used to define recursive objects, called fractals. An example
of a fractal object is a tree that can be recursively described, by saying that a
tree consists of a trunk with a number of branches protruding from it and the
branches are actually smaller trees. At some point, the recursion must stop and
the branches spawn leaves instead of more branches.
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Multiple Procedure Calls

You can concatenate multiple successive calls to the same procedure into a
single statement. To do this, separate the parameter lists by commas. This syntax
is sometimes more readable and more compact, but will function exactly the
same as if the procedure calls were listed separately.

Example: Multiple Procedure Calls
// These three individual calls to the same procedure ...
draw_line from <0 0 0> to <10 0>;
draw_line from <10 0> to <0 1 0>;
draw_line from <0 1 0> to <0 0 1>;
/[ ... can be replaced by

draw_line from <0 0 0> to <1 00>, from <1 0 0> to <0 1 0>, from <0 1 0> to <0 0 1>;

// These three object-oriented calls to the same method ...
stack push thingl;
stack push thing2;
stack push thing3;

/[ ... can be replaced by
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stack push thing1, thing2, thing3;

// These two object-oriented calls to the same method ...

hashtable enter thing1 as "fred";
hashtable enter thing2 as "barney";

% ... Can be replaced by
hashtable enter thing1 as "fred", thing2 as "barney";
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CHAPTER 7

Arrays

An array is a collection of variables of the same type that are grouped together
as a single unit. They are useful when you want to create such things as lists
or tables of data.

You can think of an array as being like a table of data, where each of the
elements in the table contains the same kind of data. Individual elements are
referred to by number. The array elements are numbered by consecutive integers.
The number of the array element is called the /ndex. Array indices in OMAR
usually start at 1 and go up to the number of elements in the array, but they
may begin at any number, such as 0, which is sometimes mote convenient.

Table 7-1: A Simple Array

integer i[0..3] = [68 193 23 239];

[0l [l [21 3]
[ 6811931 23 [239]

Arrays as Reference Types

Arrays are similar to objects and structs in many ways because they are all
reference types. This means that they may be allocated and deallocated at any
time during the execution of the program. Also, you may have multiple array
variables that refer to the same actual data, or you may have arrays that don't
refer to any actual data at all and are therefore said to be none. Arrays that are
none may not be accessed until they are allocated.
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Arrays, like other reference types, may be allocated at the time that they are
declared or at any later time during the execution of the program. If an array
is to be allocated at some later time, it is still necessary to declare the array
beforehand so that there is a reference that may be used to handle the array.

Creating Arrays

Arrays are declared in a similar way to normal variables. To declare an array,
you begin by naming the type of the array elements, followed by the name of
the variable, just like a regular declaration, except that after the variable name
you add an expression of array dimensions that tells how big the array is and
what the minimum and maximum array indices are. The array dimensions atre
of the form:

[ <min expression> .. <max expression> ]

where min expression evaluates to the integer that is the index of the first element
in the array and max expression evaluates to the integer that is the index of the
last element in the array. If the minimum index is greater than the maximum
index, the array will have no elements.

Example: Some Array Declarations

boolean flags[0..4];

scalar radius[0.. (facets * 2)];
vector points[1..100];

char name[1..40];

Since array declarations are derived from regular variable declarations, you can
freely intermix regular variables with array variables of the same type in the
same declaration. For example:

Example: Mixing Array & Non-Array Declarations

boolean done is false, flags[0..4], found is false;

scalar temperature, rad|us[0 (facets* 2)], time = 0;
vector center = <0 00>, pomts[l 100], direction = <00 1>;
char ch, name[1..40];

Accessing Array Elements

Once you have created your array, you must know how to put individual
elements into the array and retrieve them from the array. The individual elements
of the array can be individually changed without having to change all of the
elements of the array. The array elements, themselves, ate treated just like
individual non-array variables. This means that array elements can be used in
assignment statements and expressions, just like ordinary variables. In order to
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specify an array element instead of the entire array, you need to follow the name
of the array variable with an array dereference. The array dereference tells where
in the array the element is found. The array dereference is of the form:

<variable_name> [ <integer expression> ]

where the expression evaluates to an integer that is between the minimum and
maximum index of the array. If the expression is outside of the range of the
array, then a run-time error occuts.

Listing 7-1: Use of Arrays to Calculate Averages

do averages;
integer n = 3, numbers[1..n];

scalar question average is
integer sum = 0;

for each integer i in numbers do
sum = itself + i;
end;

answer sum/ n;
end; // average

verb averages is
numbers[1] = 10;
numbers[2] = 30;
numbers[3] = 40;

write "average = ", average, ;
end; // averages

Dynamic Arrays

For more complicated programming tasks, you might often find that you don’t
know at the time an array is declared how many elements it should have. For
these cases, it is possible to defer actually creating the space for the array
elements to a later time. These types of arrays are known as dynamic arrays.
To specify that you don’t know how many elements to have in the array at the
time of declaration, leave the square brackets empty.

Example: Dynamic Array Declarations

integer i[];
char name[];
thing type things[];
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You cannot assign values to any of the array elements individually until the size
of the array is specified. The dimensions of the array are specified using a dim
statement. The dim statement is formed as follows:

dim <variable name> <array dimensions> ;

The array dimensions expression is of the same form as used in the array decla-
rations described above. The dim statement works identically for arrays of
primitive types as for arrays of reference types. When you use dim to create an
array of reference types, it automatically ‘news’ each of the elements in the array.
If you have an array of objects that are of a class with a constructor defined,
the constructor is automatically called for each of the elements in the array. If
you have an empty dynamic array of structures or objects and you simply want
to create an array of none references without actually allocating all of the
elements, you must place the keyword none after the dim keyword in order to
suppress the allocation of the elements.

Example: Dimensioning Dynamic Arrays

struct part has

char name[]; // Dynamic array as a field of a struct
integer inventory_number;
scalar price;
end; // part
integer i[]; // Dynamic array declarations
part type parts[], inventory[];
dim i[1..10];
dim parts[1..100]; /[ Creates array[1..100] and then creates 100 parts
dim none inventory[1..1000]; // Creates array[1..1000] of null references to parts
for integer counter = 1..500 do // Creates first 500 out of 1000 parts leaving the last
y new inventory[counter]; /] 500 references in the array to be none
end;

A common use for dynamic arrays is as parameters to procedures where the
array size is determined at the start of the procedure. Each time the procedure
is executed, the array parameters may have different sizes and values.

Smart Arrays: Min, Max and Num

It is frequently necessary to know the bounds of an array, since accessing any
array element outside of the valid range results in an error. Since the size of a
dynamic array is not determined at the time that the array is declared, you need
a way later on to find out what the size of the array is. In languages such as
Pascal and C, which do not have ‘smart arrays,’” you must pass around auxiliary
integer variables along with the arrays to tell what the array sizes are. This is
very inconvenient, not to mention error-prone. In OMAR, as in Java and

Modula-2, the arrays are ‘smart’ and you can ask the array about its size and
bounds. This is provided by the built-in functions named min, max and num.
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At any time, you can ask what the index of the first and last elements of the
array are by calling min and max with the array in question as the argument. To
find out what the size of the array (max - min + 1) is, use the function, num.
This way, arrays always ‘know’ their size, so instead of having to keep around
separate variables to keep track of the array size, you can just ask the array for
its dimensions.

Listing 7-2: Use of Smart Dynamic Arrays to Calculate Averages

do averages;

scalar question average
_ integer numbers]];
is

integer sum = 0;

for integer counter = min numbers .. max numbers do
sum = itself + numbers[counter];
end;

answer sum / num numbers;
end; // average

verb averages is
write "average = ", average [10 30 40 15 8 60], ;
write "average = ", average [10 30 50 158 60], ;
write "average = ", average [10 30 60], ;

end; //averages

Assigning Arrays
Although you can manipulate arrays by assigning each of their elements
separately, it is sometimes more convenient to initialize and assign arrays as a
whole unit. If two atrays have the same dimensions, then the values of one
array can be assigned to the other array using a simple = assignment statement.
If the array that you are assigning to is empty, then when you petrform the
assignment, it will automatically be allocated to the size of the array that you
are assigning. In the case that both arrays are allocated but are of differing sizes,
a run-time error occurs when the assignment is attempted.

Array Expressions

As an alternative to assigning one array to another, you can also assign an array
a list of values given by an array expression. An array expression specifies each
of the values of the elements of the array inside a pair of square brackets. The
array that you are assigning to must either be none or have the same number
of elements as the atray exptession, ot else an error occurs. Arrays of type char
can also be assigned by providing a string of characters inside of double quotes.
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When you assign an undimensioned array with an array expression, its default
minimum index is 1, as it is for the C array in the example below.

Example: Assigning Arrays

integer a[0..3], b[1..4];
integer c[] =[10203 0
char message[] ="g
char name[];

write c[1], ; // Writes "10"
a=1[45842291];

1;// Indices for ¢ become 1..3
me over - you lose";

name = "boo";
b=a; /] OK — arrays both have 4 elements
c=a; // Run-time error — arrays are of differing sizes

Assigning Arrays by Reference

When you use the = operator to assign arrays, as in the example above, the

program is really copying one array and assigning the duplication to another.

Arrays, however, can also be assigned by reference, much like reference variables.
Instead of using the refers to operator that reference variables use, atrays use
the iS operator to assign by reference.

When arrays are assigned by reference, it doesn’t matter whether they already
have the same dimensions or not; they need only be of the same type. Once
an array is assigned by reference, it then refers to the array that was assigned
to it, so that a single array may be referred to by multiple array names.

Example: Assigning Arrays by Reference

integer a[] = [50 51 52 53 54 55]; // Indices for a become 1..6
integer c[] = [10 20 30]; // Indices for ¢ become 1..3
char message[] = "game over - you lose";

char name[] is message;

write name, ; // Writes "game over - you lose"

cisa; // Now a and c refer to the same array.

write c[1], ; /[ Writes "50"

c[6] = 60; // Changes the 6th element of both ¢ and a.

write a[6]; /] Writes "60"
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Multidimensional Arrays

An ordinary array is one-dimensional because it has length only. A two-dimen-

stonal array has length and width; therefore you can imagine a two-dimensional

array as a table of entries. If you stack these tables one on top of another like

floors in a skyscraper, then you have a three-dimensional array, with each

element uniquely defined by three coordinates, the indices of the two dimensions
in the table plus the index of the table in the stack. In theoty, you can have
arrays with any number of dimensions that you wish, although it gets difficult

to visualize them past three dimensions. All multidimensional arrays are ‘square’

because the bounds of each dimension are the same for all subarrays.

Figure 7-1: Multidimensional Arrays
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To declare a multidimensional array, use the same syntax as a single-dimen-
stonal array but with multiple min..max pairs separated by commas inside the
brackets of the array dimensions expression. To access an array element, you

must provide multiple indices separated by commas inside the square brackets

of the array index expression. If you need to create a dynamic atray, you must

leave out the min..max bounds on each dimension in the array since it doesn't

make sense to specify one dimension and not another of a multidimensional

array.

Example: Multidimensional Arrays

integer a[1..10];
integer b[1..10, 1..20];
integer ¢[,,];

dim c[1..5,1..8, 1..2];
a[1] =0;

b1, 1] =0;

o1, 1,1]=0;

/[ One-dimensional array of integers
// Two-dimensional array of integers
/[ Three-dimensional dynamic array of integers

/[ Dimensioning a multidimensional array
// Dereferencing a one-dimensional array
/[ Dereferencing a two-dimensional array
// Dereferencing a three-dimensional array
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Min, Max, and Num with
Multidimensional Arrays

Using the functions min and max with multi-dimensional arrays is a bit tricky
because you must keep in mind which dimension of the array you are examining.
You can specify which dimension to refer to by adding extra empty square

bracket pairs after the name of the array which is passed to the min, max, or
num function. For example, if you have the following three dimensional array:

integer i[1..10, 2..20, 3..30];

Then you can find the bounds on each dimension of the atray as follows:

min | = 1, maxi = 10
mini] = 2, maxi[] = 20
mini[,] = 3, maxi,] = 30

Arrays of Arrays

For most applications, it is appropriate for multidimensional arrays to be square.
There are a few cases, however, where you can visualize your data as belonging
in tables that are not necessarily square. For example, if you have a table of
names, then you conceptually have a two dimensional table of characters with
each row having a different length.

Figure 7-2: An Array of Arrays
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This way, each subarray has its own min and max information and may be any
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size that 1s needed. To create an array of arrays, simply list the array dimensions
expressions after the name of the variable in the declaration.

Example: An Array of Strings (An Array of Char Arrays)

char names[1..10](J;

names[1] = "Fred";
names[3] = "Barney";
names[5] = "Wilma";

names[10] = "Betty";

Figure 7-3: A Triangular Array of Arrays
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Example: Creating a Triangular Array of Arrays

integer i[1..10][];
integer index = 1;

for integer row = min i .. max i do
dim i[row][1..row];
for integer column =1 .. row do
ifrow][column] = index;
index = itself + 1;
end;
end;

Since creating arrays of arrays is obviously more flexible than square multidi-
mensional atrays, you may be wondering why not just make all arrays 'arrays of
arrays'. Indeed, this is what is done in Java. For many applications, patticularly
scientific applications where large square arrays may be needed, this is a very
bad idea. This is because each subarray allocation in a non square array has
a cost associated with it in terms of allocating the array and in terms of the

extra memoty needed for the control information, including the min and max
indices that are stored in each array. While this is not prohibitive for small arrays
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like those you may find in a particular business application, it can become
prohibitive for more demanding applications.
For example: the declaration:

integer i1..10][2..20][3..30]

will result in the following:
1) allocate an array 1..10 of references to type integer[][]
2) repeat the following 10 times (once for each element):

1) allocate an array 2..20 of references to type integer]]
2) repeat the following 19 times (once for each element):
1) allocate an array 3..30 of integer

This one declaration will result in a total of 1 + (10) * (1 + 19) = 201 separate
arrays being allocated, so you can see that allocating large arrays of arrays of
arrays can be potentially very slow and memory consumptive. This is why it’s
best to use square multidimensional arrays whenever possible.

Listing 7-3: Min and Max with Arrays, Arrays of Arrays, and Multidimensional Arrays

do test;

verb test is
// A single-dimensional array
integer a[1..10];

/[ Arrays of arrays
integer b[1..10][1..20];
integer c[1..10](1..20](1..30];

// Multidimensional arrays
integer d[1..10, 1..20];
integer e[1..10, 1..20, 1..30];

// Find min, max of a single dimensional array
write "single dimensional array:", ;

write 'min, maxa=", mina,"..", maxa, ;
write;

// Find min, max of arrays of arrays
write "arrays of arrays:", ;

write "min, maxb =", minb,"..", maxb, ;

write "min, max b[1] =", min b[1], " .. ", max b[1], ;

write "min, maxc=", min¢,"..", maxg, ;

write "min, max ¢[1] =", min c[1]," .. ", max (1], ;

write "min, max ¢[1][1] =", min c[1][1]," .. ", max c[1][1], ;
write;

// Find min, max of multidimensional arrays
write "multidimensional arrays:", ;
write "min, maxd =", mind, " ..", maxd, ;
write ::m!n, max d[] = ", min d”[], “ LU omaxd(],
write "min, maxe =", mine, ".. ", maxe, ;
write ::m!n, max e[] = “‘,‘ min ef], " p “,“max e[l,;

’ }A/Il‘tltet min, max e[,] =", mine[,],"..", maxe[,], ;

end; // tes
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Assigning Sub-Arrays
Sometimes you find that you would like to be able to assign just a piece of one
array to another array. In other computer languages, you would do this by
writing a snippet of code to loop through the elements copying the desired
elements one by one. In OMAR, however, you can automatically do this by
specifying a subrange of the array to copy.

Example: Assigning Sub-Arrays
integer i[1..5], j[1..10];

integer a(0..2J[0..2];

integer b[1. 3, 1.3];

integer ¢[1..10, 1..10, 1..10];

% 1-dimensional arrays

i =j[1.5]; // Copy a subarray to an array

if1..3] =j[8..10]; /[ Copy a subarray to another subarray

i =j[6..]; // Copy an implicit subrange to an array

i[.4]=17..]; // Copy an implicit subrange to another implicit subrange

i[.] =jl6..]; // More implicit subranges

% 2-dimensional arrays

a =b; // Copy a multidimensional array to an array of arrays
= b[l 3,1.3]; // Copy a subportion of a multidimensional array to a

// multidimensional array
a[1..2][1..2] = b[1..2, 1..2]; // Copy a subportion of a multidimensional array to a
// subportion of an array of arrays

// 3-dimensional arrays

Il

i=cl,1,1.5]; // Copy a row of a multidimensional array

j=c[1.10, 1, 1]; // Copy a column of a multidimensional array

a=([1,1.3 1.3]; /[ Copy a multidimensional subportion of a multidimensional
/[ array to an array of arrays

b=c[1,1.3 1.3]; /[ Copy a multidimensional subportion of a multidimensional

// array to a multidimensional array

Resizing Arrays
Since arrays must be declared to be of some fixed size and programs often do
not know ahead of time how much space may be required for certain kinds of
data, we run into a problem. In many languages where array allocation is
cumbersome and inflexible, the general approach is to use lists for everything.
Linked lists can have a large overhead associated with them both in terms of
extra storage and also in traversal time so this is not the ideal solution.

The most obvious thing to do when you run out of space in an array is to
allocate a new, bigger array and to copy the information from the first array
into the new array. In most applications, this will wotk just fine. Thete ate cases,
however, where this can present a problem. Suppose there are other data struc-
tures that refer to this first array. When you replace the old array with the new,
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larger array, the other data structures will still refer to the first array. In many
cases, you may not be able to find out where these references are without
checking every piece of data that is used by your program. This is usually a
completely infeasible option.

Example: The Array Reallocation Problem

integer a[1..10], b] is a;

write "before:", ; )
write "min, maxa =", mina, ", ", max a, ;// aand b refer to thesame array
write "min, maxb =", minb, ", ", maxb, ;//

ais none;
dim a[1..20];

write "after:", ; . .
write "min, maxa =", mina, ", ", max a, ;// a and b refer to different arrays
write "'min, maxb =", min b, ", ", max b, ;//

The Redim Statement

The solution to this problem is to use the redim statement. The redim statement
works just like the dim statement except that it is used to enlarge the size of a
preexisting array instead of to create a new array. If the redim statement is called
using a null array, then an error will result. Since the redim statement resizes
an existing array without creating a new one, any preexisting references to that
array will refer to the new array after the array is resized.

Example: The Redim Statement

integer a[1..10], b] is a;

write "before:", ; )
write "min, maxa =", mina, ", ", max a, ;// aand b refer to thesame array
write "min, maxb =", minb, ", ", maxb, ;//

redim a[1..20];
write "after:", ; .

write "min, maxa =", mina, ", ", max a, ;// aand b still refer to the same array
write "min, maxb =", minb, ", ", maxb, ;//
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CHAPTER 8

Input/Output

Although it is possible to write programs that are self-contained, many programs
need to input data or output data or messages to the user. The methods used
to do this are usually inconsistent and system-dependent because of the differ-
ences in operating systems and hardware involved. For instance, if you ask the
computer to print a message and thetre are no windows open, where does it
gor Or if you try to read a character, where does it come from? Although
normally these procedures output data to the screen and take data from the
keyboard, operating systems such as UNIX allow these sources to be redirected,
so this may not be the case.

OMAR provides a small but useful set of procedures that can serve the majority
of I/0O related tasks. All input/output procedures are defined for the ptimitive
types: char, byte, short, integer, long, scalar, double, complex, and vector.

Input: The Read Statement

The mput procedure reads data from the standard source for input, which is
usually the keyboard. If you are reading from the keyboard, then this procedure
waits until the values are typed in before returning to the program. If the
incoming data cannot be interpreted as the desired type then an error will occur.
The form of a read statement is as follows:

Figure 8-1: The Read Statement

read vi,v2,v3,..vN;  //Wherevl ... vN are variables
// of a primitive type or array
/[ of chars (string)
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Example: The Read Statement
integer number;

write “input a number to square:”;
read number;
write “the square of *, number,

\\ n

, (number*number), ;

Output: The Write Statement

The output procedure, Write, is similar to the input procedure, read. Unless the
output is redirected to some other destination by the operating system, the
messages go to the standard output, meaning the console, or screen.

Write can take arguments of all of the primitive types, boolean, char, byte, short,
integer, long, scalar, double, complex, and vector, plus atrays of characters (sttings).
If write is called with no arguments, then it prints a blank line. Usually, when
output messages atre printed, you want to go to the next line at the end of the
message, so usually the last argument in a write statement is an empty argument.

The form of a write statement is as follows:

Figure 8-2: The Write Statement

write exprl, expr2, expr3, ... exprN ;// Where exprl ... exprN are
// expressions which evaluate
// to a primitive type or an
/] array of chars (string)

Example: The Write Statement

integer N = 10, a = 64;
scalar b = 64;
complex ¢ = <4 1>;

write "hello world!", ;
write "the value of the variable, N, is ", N, ;
write "the values of a, b, and care " a, ", ", b, ", and",

Program Arguments

In operating systems such as UNIX, which operate from a command prompt,
it makes sense to allow a program to receive messages from the command line.
Also, when making OMAR applets to be placed in web pages, it is often useful
to be able to pass arguments into the applet from the HITML code. In C, this
is done using the argv and argc parameters to main. In OMAR, this is done
using a similar mechanism.

Normally, any procedure listed in the program header must have no parameters.
The one exception to this rule is to allow the main procedure to have one
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parameter, an array of strings (arrays of chars), to hold the program arguments.
This parameter may have any name that you wish but it must be of the type,

string[], or char[][].

If you are familiar with C, note that this is similar to the argv, argc convention
but more elegant because arrays in OMAR implicitly know their own bounds
and size, so you don't need a separate parameter for the size of the array.

Listing 8-1: A Program Receiving Program Arguments

do write_args;
type string is char{];

verb write_args
. string type args[];
is
write "The program arguments are:", ;
for integer counter = min args .. max args do
write "argument[", counter, "] =", args[counter], ;
end;
end; // write_args

If, in HTML code, you type, (name of OMAR applet) shish boom bah, then the
parameter, args, will end up referring to an array, size [1..3], that refers to three
strings, "shish", "boom", and "bah". Each string of characters separated by spaces
that comes after the name of the input file becomes an element in the program

atgument array.
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CHAPTER 9

User-Defined Types

The primitive types that have been desctibed so far—char, integer, scalar, and
so forth—are the basis for representing every form of data that is used in a
computer program. Theoretically, you could write any program using just these
primitive types and no others. Most applications, however, require the computer
program to describe more complex situations than may be conveniently
expressed using just the primitive types.

User-defined types are a general way of structuring data to represent mote
complex situations. There are four basic kinds of user-defined types in OMAR:
type aliases, enumerated types, structures, and classes. Classes, also known as
subjects, are like sophisticated structures, and are described in much more detail
in the later chapters on “Object-Oriented Programming”.

Basic Syntax of User-Defined Types
User-defined types use a slightly different syntax than primitive types. To distin-
guish user-defined type names from other identifiers, OMAR requires that user-
defined type names are followed by the keyword type when they are used. Thus,
a variable declaration using a user-defined type has the following syntax:

Figure 9-1: Syntax of a Variable Declaration Using a User-Defined Type

<type name> type <variable name> <optional initializer> ;
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Example: Using the type Keyword

enum material is plastic, glass, porcelain;  // An enumerated type declaration
// (as described in a later section)

material type jug_material;
material type vase_material is glass;
material type plate_material is porcelain;

Because user-defined type names are always distinguished from identifiers by
the keyword type, a user-defined type and a variable of that type can have the
same name. You can easily tell the difference between the variable name and
the type name because the type name must be followed by the keyword type.

Example: Giving a Type & a Variable the Same Name

material type material;
material is plastic; /| Assigns a value to the variable material

Type Aliases

The #ype alias, the simplest user-defined type, is really just a way of giving a new
name to an existent type. Type aliases can be useful when you are frequently
using a primitive type for a very particular purpose. For example, you may have
an OMAR program in which you frequently use the vector type to represent
colots. You could create a type alias for the vector type named color. The color
type would have the exact same properties as the vector type, except that it
would have a different name and would use the syntax of a user-defined type.

Type aliases can also be used to represent arrays. This proves especially useful
in the case of strings. If you define a type alias string that represents a char[],
you no longer need to use array brackets when using character arrays.

Figure 9-2: Type Alias Declaration Syntax

type <type alias name> is <type name> <optional array brackets> ;

Example: Using Type Aliases

type color is vector;
type switch is boolean;
type string is char(];
type table is integer,];

const boolean on is true, off is false;
integeri[1..5,1..20];

color type color = <.50.5>;

switch type power_switch is on;

string type name = "Fred";

table type table is i; // A valid assignment because the table type is equivalent to an integer[,]
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Enumerated Types

Enumerated types are used to represent a situation where there are a known,
fixed number of states. Some examples of things that would be well represented
by enumerated types are days of the week, the seasons of the year, the suits in
a deck of cards, and the nucleotide base types in a DNA molecule. If you didn't
know about enumerated types, you would probably represent these types of
situations using an integer to represent the state and defining a set of integer
constants for the values of the states. For example, winter is season #1, spring
is season #2 and so on. In languages like Java, where enumerated types do not
exist, this 1s how the situation 1s handled.

Example: Using Integers to Specify a Variable with a Fixed Number of States

const integer straw = 1; /[ definitions of the possible states
const integer wood = 2;
const integer brick = 3; //

integer material = straw;

Using integers in this situation will work fine and you could implement things
this way in OMAR as well; however it is really not a good idea for two reasons.

* An integer can take on values that are outside the range of the meaningful
values that represent valid states. In the example above, you could
conceivably assign the integer material the value of 47, which would be
completely meaningless because there is no corresponding material for the
value of 47. Although this assignment is not considered an error, errors
may crop up in other areas of the code where it is assumed that the material
will only take on the values in the defined range.

* Since all integers are considered to be the same type, just using integers
to represent different things gives you no type-checking protection. If you
have two integers that represent completely different things, then you can
assign them to each other without causing an error because they are both
integers.
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Example: Missed Errors Caused by Using Integers Where Enumerated Types Should Be
Used

const integer spring = 1; // definition of the seasons of the year
const integer summer = 2;

const integer autumn = 3;

const integer winter = 4;

const integer hearts = 1; // definition of the suits of cards
const integer diamonds = 2;

const integer spades = 3;

const integer clovers = 4;

integer season = fall;
integer suit = hearts;

% mistakes that are NOT caught by the compiler:

season = hearts; /| oops - assigned enum constant to wrong "type"

suit = winter; // oops - assigned enum constant to wrong "type"

season = suit; // oops - assigned an integer "type" to another integer "type"
suit = 128; // oops - assigned value out of range

Fortunately, there is a solution to the problem: enumerated types. When you
define an enumerated type, you list each of the possible states that variables of
this type may have. Then, when you declare a variable of this type, the compiler
assures that you only assign valid states to that variable. Also, the compiler will
not allow you to assign two variables of differing types to one another, so you
don't have to wotty about making any of the mistakes illustrated above because
the compiler will tell you if you do something wrong. In addition, an enumerated
type may have the value of none, a keyword indicating that the enumerated
variable does not have a valid state.

Example: Using an Enumerated Type to Specify a Variable with a Fixed Number of
States

enum material is straw, wood, brick; // definition of the possible states
material type material is none;
material is straw;
Example: Errors Caught when Using Enumerated Types instead of Integers

enum season is spring, summer, autumn, winter; // definition of the seasons of the year
enum suit is hearts, diamonds, spades, clovers;  // definition of the suits of cards

season type season is fall;
suit type suit is hearts;

% mistakes that ARE caught by the compiler:

season is hearts; // compile error - assigned enum constant to wrong type
suit is winter; // compile error - assigned enum constant to wrong type
season is suit; // compile error - assigned a type to another type

suit is 128; // compile error - assigned value out of range
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Structures

Another kind of user-defined type is a structure. OMAR structures are similar to
structures in C++ or records in Pascal. Structures allow you to group together
a set of related data into one conceptual unit.

Consider, for example, how you might represent something like the size and
shape of a button on the scteen. You could keep track of the horizontal and
vertical location and the length and width of the button as a set of integer
variables. But that's already four vatiables just for one button. In practice, you
often find that you need to use a group of many more than just four variables
to represent some concepts. Your button, for example, could also have a label,
a color, and a font associated with it. If you had to explicitly declare and name
variables for each of these properties, then it would soon become unmanageable.

Structures allow you to create a sort of data template for an idea and then once
the template is declared, you can create multiple instances of this idea, each
with its own individual set of data.

Example: Declarations of Two Buttons without the Use of Structures

char button_label[];
integer button1_hcenter, button1_vcenter;
integer button_hsize, button1_vsize;

char button2_label[];

integer button2_hcenter, button2_vcenter;
integer button2_hsize, button2_vsize;

Example: Declarations of Two Buttons with the Use of Structures

struct pixel has // A structure type declaration (pixel is a new structure type) C
integer H, V; &
end; // pixel r'?
struct button has // A structure type declaration (button is a new structure type) By
char label[]; 2
pixel type center, size; /] A structure variable decalaration (center and size are new -
variables) <
end; // button E
buttogl ty)pe button1, button2; /| A structure variable declaration (button1 and button2 are new
variables

Accessing a Structure’s Fields
Each of the data elements, or fie/ds, in a structure has a name just like a regular
variable. A field is accessed by giving the name of the structure variable, followed
by a single quote and a letter S, followed by the name of the field. The single
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quote and letter S are together known as the apostrophe s operator, which is used
to denote possession, as in English.

Example: Accessing a Structure’s Fields

pixel type screen_center;
screen_center's H = 512;

screen_center's V = 384;
write "center of the screen =", screen_center's H, ", ", screen_center's V, ;

Since structures may also contain other structures, you may have to dereference
a structure multiple times to get at the field you need. For example:

Example: Accessing a Nested Structure’s Fields

button type button;

button's label = "quit"; // asingle field dereference
button's size's H = 40; // multiple field dereferences
button's size's V = 10;

The With Statement

Sometimes you will find that you have a sizeable block of code that references
the fields of a particular struct repeatedly. Since it is inconvenient to repeatedly
dereference this structure to get at its fields, a shorthand notation is provided,
the with statement. The with statement allows you to specify a certain block of
code in which you are understood to be refetring to a particular struct. Inside
of this block, whenever the pronoun its is encountered, it is understood to be
referring to the struct named at the top of the with statement block.

Figure 9-3: The With Statement

with <struct expression> do
<declarations>
<statements>

end;

With statements may be nested, in which case, the priority goes to the innermost
block. If you are familiar with Pascal, note that OMAR’s with statement differs
from Pascal's because it requires the its pronoun to explicitly refer to a field
instead of having any unresolved identifier implicitly refer to a field of the object.
This makes OMAR’s with statement much safer because you don’t have to
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wotry about a reference to a local variable inside of a with block referring to
a structure member by mistake.

Example: Using a With Statement

button type button;

with button do
its label = "quit";

with its center do
its H = 512;
its V = 384;
write "button's center =", its H, ", ", its V/, ;
end; // with
end; // with

Assigning Structures

If two structure variables are of the same structure type, you can assign one to
another just like normal, primitive variables by using the = operator. In the case
of structs, as with arrays, the = operator actually makes a complete copy of one
structure and assigns the copied structure. Therefore, the = operation can get
to be quite expensive when dealing with large structures.

A more efficient method of assignment is assignment by reference, which uses
the is operator. When you assign one structure variable to another using the is
operatot, you are in effect making both variables refer to the same structure.
This means that a change to one variable effects both variables, as is the case
with reference variables of primitive types. Creating multiple references to a
structure is discussed more in a later section.

Example: Assigning Structures

pixel type pixell
pixel type pixel2;
pixel type pixel3;

pixell's H = 512;
pixell's V = 384;
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pixel2 = pixell; // pixel2 is a copy of pixell
pixel3 is pixell; // pixel3 refers to pixell

pixell's H = 480;

write "H of pixell: ", pixell'sH, ; // writes out 480
write "H of pixel2: ", pixel2's H, ; /[ writes out 512
write "H of pixel3: ", pixel3's H, ; // writes out 480
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Primitive Types and Reference Types

Structured types (structures, subjects, and arrays) are distinctly different from
the primitive types, such as integer and char, for two treasons.

* They may be allocated and deallocated. When a structure is deallocated,
then the memory that is used to represent the structure is freed up for use
elsewhere. Since user-defined structures and arrays are more complex than
the simple primitive types, it makes sense to be able to deallocate them
when they are no longer needed.

* Structured types may be used to create dynamic linked data structures. This
means that the user-defined types may contain links to other structures or
objects that may contain links to yet other types and so forth. This allows
you to build very complex and flexible data representations. Instead of
being completely defined at the time the program is written, dynamic data
structures may actually be assembled and disassembled as the program runs.

Since structures, subjects and atrays are all considered reference types we may
henceforth use the term object to refer any one of these types when discussing
memory allocation issues.

Unallocated Objects

In order to signify to the computer that an object is no longer needed and may
be reclaimed, you can assign the reference to it a special value, called none, that
indicates that the reference no longer refers to any structure instance. If a
reference to a structure is NONe, then you may not access any of its fields because
it is not valid. If you try to access a field of a structure that is none (deallocated,
invalid), then a run-time error results. Unused objects are eventually reclaimed
by a special mechanism, known as the garbage collector, and reused by the
system.

Example: Freeing a Structure for Deallocation

button type button;

button's label = "quit";

button is none;

write "button's label =", button's label, ; // run-time error - button is none

Normally, when you declare a structure, the structure is automatically allocated
for you, just as a primitive type such as an integer or char would be. Since
objects may be created dynamically, as the program runs, you may wish to defer
the creation of the object until later, when it is more appropriate to allocate the
structure. This is done by initializing the structure to none inside of the initializer
portion of the declaration.
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Dynamically Creating Objects
Objects can be created in two different ways. The first place where they can
be created is in their declarations. In this sense, they appear to be just like
simple, primitive types such as integer or char. The second way to allocate struc-
tures and objects is to dynamically allocate them in a new statement as the

program is running.

Suppose you create an unallocated object that you want to use at some later
point during the execution of the program. In order to allocate the object, you
pass the object to a special built-in procedure called new which does three things.

* It allocates memory space for the object.

¢ It executes the initializers to set the initial values of each field in the

structure.

¢ For instances of a subject, it calls the constructor method, if one exists, to
initialize the object (mote on this in the section on object-oriented

programming).

If you try to new an object that already refers to an allocated object, then a

run-time error results.

Example: Dynamically Allocating Objects
button type button1 is none;

new button;
button1's label = "quit";
new buttonl; /[ error - button is already allocated (not none)

Creating Multiple References to an
Object

You can visualize a variable of a reference type (either a structure or a class)
as a pointer that is either none, or else points to a block of data that contains
the fields of the structure. This extra level of indirection allows several
reference type variables to share the same block of data. You can think of the
references as handles to the actual block of data. With structures and objects,
you can have several vatiables throughout the program that grant access to the
same plece of data. Although this can sometimes result in confusion, it is also
a very powerful feature that allows linked and even circular data structures to

be built.

C
1%
@
T
)
]
=
=}
@
o
-
=<
°
@
v

Dynamically Creating Objects 95



Example: Creating Multiple References to a Structure

button type buttont; /[ creates a structure referred to by buttonl

button type button2 is buttoni; // creates another reference to buttonl

button type button3 is none; // creates a reference to none

button3 is button2; // button2 and button3 share data (with buttonl)
button1's name = "quit";

write "button2's name =", button2's name, ; // prints the name of button2 (same as button1)
write "button3's name =", button3's name, ; // prints the name of button3 (same as button2)

Since arrays are also considered to be structured types, you may also create
multiple references to arrays. Arrays are somewhat simpler than structures or
classes, though, because you may never have circular references. For example,
you may have a structure where one of the fields is actually a reference to the
original structure. With arrays, this is not possible because the dimensions of
the elements are always less than the dimensions of the original array.

Example: Creating Multiple References to an Array

integer i[1..10];
integer j[] is i; // array j shares data with array i

i(1] =47,
write "value of j{1] =", j[1],;  // verify that the contents of j are the same as the contents of i

Freeing Objects

Remember that reference types ate allocated either by their declarations or by
a following new statement. At some point, when you are finished using these
objects, you are going to want to return them to the system for reuse. If you
are a C++ programmer, then you know that each call to new should eventually
be followed by a delete command to deallocate each object.

In OMAR, as in Java, the programmer can not and need not deallocate objects.
Objects that are no longer referenced by any variables are automatically collected
for reuse in a process known as garbage collection. At first, the problem of figuring
out when an object can be recycled seems straightforward enough. But
remember that objects may have multiple references to them. Therefore simply
setting a reference to none does not automatically cause its object to be freed,
because there may still be other references to this object in other parts of the
program.

In addition, there are circumstances where references to an object are implicitly
removed.

* When you leave a procedure, all of its local variables disappear. Therefore,
any objects or structures that are referenced only through a local variable
are then inaccessible and may be recycled by the garbage collector.
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* References to an object are also implicitly removed when you have a
structure that contains references to other structures. When the references
to the parent structure are removed, then any of its fields not referenced
elsewhere will be freed up for recycling.

Listing 9-1: Implicitly Freeing Objects
do test;

integer i[];

verb do_stuff is
// when this procedure ends, j and k disappear. Since the variable, i, also references the array,
/[ [5 67 8], this array persists after the procedure is finished. The other array, [12 3 4],
/] 1s recycled because the only reference to it, j, has disappeared.

integer j[] =_[1 234];

integer k[] =[5678];

iis k; /[ let the external variable, i, share the array, [56 7 8]
end; // do_stuff
verb test is

do_stuff;

write "min, maxi =", mini, ", ", maxi, ;
end; // test

Testing Object Allocation

Often, you need to check whether an object has been allocated before you
perform some operation with it. One way to do so would be to use the following

syntax:

Example: Testing Whether an Object Has Been Allocated

if button isn't none then
y {operations involving button}
end;
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As an alternative to the peculiar double-negative syntax in the example above,
OMAR provides a Some operator, which wotks like a boolean question, taking
an object variable as its parameter, and answering true if the object has been
allocated. By using some where appropriate, you can make your code more

readable and English-like:

Example: Testing Object Allocation Using the some Operator

if some button then
{operations involving button}
end;
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CHAPTER 10
Introduction to
Object-Oriented
Programming

This chapter introduces the basic elements of OMAR’s object-oriented features.

The basic idea behind object-oriented programming (OOP) is that, instead of
having the data and instructions for each conceptual entity spread throughout
the program, or grouped together simply by convention, there ought to be an
explicit, structured method of grouping together data and instructions that
belong to a particular idea. In OMAR, as in other object-oriented languages,
you can package data and instructions in conceptual units called c/asses. Each
class serves as one complete computational description of an idea.

Class Components: Methods &
Members

The two main components of a class are the data and the instructions that are
used to represent an object. The data consists of a number of data fields, just
like in a structure. The data fields that belong to a class are known as its members.
The instructions that belong to a class are packaged as a series of procedures
that only objects of that particular class may invoke. The procedures that belong
to a class are known as its methods.
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Class Declarations: Interface &
Implementation

Class declarations can be faitly complex constructions, since they may be
composed of a number of members and methods. When using a particular class,
you ought to be able to view easily the information that tells how the class is
to be used and skip the implementation details of the class. This idea should
already be familiar from the procedure declarations that we have been using.
You can use a procedure just by knowing the name and parameters that the
procedure accepts, without knowing the details of the implementation. In a
similar way, the class declaration lists the names and parameters of all available
methods at the top, without including their implementations. The complete
declarations of all methods including implementations are given in the last
section of the class declaration, where all of the inner workings and details of
the class must be defined.

Note that this organization is different from Java, where all of the code for the
class is bunched together in once place, and you have to search through all of
the code in the class to find which things are visible from outside the class and
which things are merely private implementation details. Sometimes this short-
coming is alleviated by having sophisticated code development environments
that let you hide the method implementations unless you need to see them.
However, it is generally better to have this structure imposed by the language
itself. In C++, the class interface is brought together in one place, as in OMAR,
but the implementation may be scattered about, or even in multiple files.

Figure 10-1: The Basic Class Declaration

subject <name>

does

<methods> /[ The interface portion:
has // introduces the
) <members> // methods and members.
is

<implementation>
end;
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Example: A Class of Circles

subject circle
does /[ Methods:
verb print;
verb move
to vector location;
end;
scalar question circumference;
scalar question area;
has /] Members:
vector center = <0 0 0>;
public scalar radius = 1;
is // Implementation:
verb print is
write "circle with", ;
write"  center =", center, ;
write"  radius =", radius, ;
write"  circumference =", circumference, ;
write" area=", area, ;
end; // print

verb move _
_ to vector location;
is

center = location;
end; // move

scalar question circumference is
answer 2 * (3.14159) * radius;
end; // circumference

scalar question area is
answer 3.14159 * radius * radius;
end; // area
end; // circle

Class Instances: Objects

The class defines everything that the computer needs to know about a certain
concept. The class doesn't actually do anything by itself, but merely defines

how some kind of entity is to be represented inside the computer, what opera-
tions can be performed on that entity, and what, exactly, each of these opera-
tions will do when they are performed upon the entity. In order to actually

do something with a class, you must make an instance of the class. This is

much like creating a new structure variable.
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An instance of a class is usually called an object. An object contains a set of
data as defined by the class to represent the conceptual entity that is described
by the class. Each time you create a new object, a completely new set of data
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is created. The class itself is like a template that describes how to create these
collections of data, or objects.

Example: Creating Instances of a Class

circle type circlel;
circle type circle2, circle3;

Invoking an Object’s Methods

In OMAR, to invoke an object's method, you simply state the name of the
object followed by the method name and the method's parameters, if any. Note
that the dot operator, or any other operator, is not required as it is in Java or
C++. The name of the method simply follows the name of the object. In
OMAR, when one of these objects is used in conjunction with one of its
methods, then it is known as a subject because from the standpoint of English
grammar, this is a more accurate description of its role in the statement.

Example: Invoking Methods: the Subject-Verb Format

circle type circlel;
circlel print; // Call a subject's verb methods
write "area = ", circlel area, ; // Call a subject's question methods

If you are used to programming in a non-object-oriented language such as Pascal
or C, it may seem strange that the circle's method, area, is able to say anything
at all about the circle since it has no parameters. In fact, the method does have
a parameter: an invisible parameter! Whenever a method is called by a subject
in this way, the subject implicitly becomes the first parameter to the method
call. All normal procedures listed as methods of a particular class have this
implicit object parameter and may access the object’s members. This will be
covered more later in the section on objective methods.

Figure 10-2: Comparing OMAR with English

Grammatical Structure English OMAR

Verb Stop! quit;
Verb Object(s) Destroy the document. free hashtable;
Subject Verb Fred writes. hashtable initialize;

hashtable enter thing as

Subject Verb Object(s)  Fred writes documents. "Fred":
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Accessing an Object’s Members

An object’s members are much like the data fields of a structure. To access an
object's members, you use the same syntax as is used to access a structute’s

fields: the object name followed by the 's operator followed by the name of
the member. Most well-designed classes require invoking the class methods to
manipulate its data instead of allowing direct access to its members. There may
be instances, however, when you want to access the members of an object

directly.
Example: Accessing Members
circle type circlel;
circlel's radius = 10;

write "radius =", circlel's radius, ;

From outside of a class declaration, an object seems a lot like a structure. Inside
of the class method declarations, however, you may have noticed that there is
something strange going on. Take a look at the implementation section of the
circle class. Note that inside of a method declaration, the members of that class
are referred to directly without any reference to the object to which they belong.

Example: Accessing the Members of an Object Inside of the Class Declaration

verb print is
write "circle with", ;
write"  center =", center, ; /[ Center of what?
write"  radius =", radius, ; // Radius of what?
write " circumference =", circumference, ; /[ Circumference of what?
write" area=", area, ; // Area of what?

end; // print

How does the compiler know what object to get these members from if there
are no parameters to the method? The culpzit here is once again the invisible

A A o35
parameter that was mentioned above. Remember that when a method is called, =S
it is called from an object that becomes an invisible parameter to the method. % &
So, the above code is actually compiled as: o g

-
73
. . . - ® 5
Example: Making the Implicit Parameter in the Code Above Explicit = o
| RS
verb print ‘ S e
_ dircle type circle; // Invisible implicit circle parameter ® 5
is
write "circle with", ; o
write"  center =", circle's center, ; /[ Member of invisible circle parameter
write"  radius =", circle's radius, ; // Member of invisible circle parameter
write"  circumference =", circle circumference, ;  // Call method with invisible parameter
write"  area =", circle area, ; // Call method with invisible parameter
end; // print
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No this Parameter

OMAR’s invisible parameter is very similar to the implicit this parameter in Java
and C++. In OMAR, however, instead of making up an arbitrary name for the
invisible parameter, it is simply given the name of the class, so if the class name
is circle, then the parameter is a circle type circle. If the class name were square,
then there would be a square type square parameter in every normal method
declaration of the square class.

Constructors

In the example above, creating a new instance of the circle class was a simple
matter of stating the type name followed by the instance name of the new
object. For more complex objects, however, it might be desirable to perform
some kind of initialization procedure every time a new instance is created. This
initialization procedure is called a constructor. A constructor method is identified
by the reserved name new. When you name a method in a class new, that method
is invoked every time an instance of the class is created.

Listing 10-1: A Class with a Constructor

do test;

subject thing does
verb new; // constructor
has
_ public integer id;
is
verb new is
static integer counter = 0;
counter = itself + 1;
id = counter;
end; // new
end; // thing

verb test is
thing type thing1, thing2;

write "thingl'sid =", thingl'sid, ; // Should write out "1"
write "thing2's id = ", thing2's id, ; // Should write out "2"
end; // test

Often, when you define a constructor, you find that some extra information
must be provided to the constructor in the form of parameters. In this case,
the syntax for the object declarations requires that the parameters be given
immediately following the name of the new object instance variable. It's sort of
like a variable declaration and method call combined into one.
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Example: A Class with a Parameterized Constructor

subject circle
does
// Methods
1l

verb new
at vector center = <0 0 0>;
with
scalar radius = 1;
end;
has
;/ Members

vector center = <00 0>;
scalar radius = 1;

// Implementation
I

verb new
at vector center = <0 0 0>;
with
scalar radius = 1;
is
circle's center = center;
circle's radius = radius;
end; // new
end; // thing

Example: Instantiating Objects with a Parameterized Constructor

verb test is
circle type circlel;
circle type circle2 at <0 0 1>;
circle type circle3 at <0 0 1> with
radius = 5;
end;
end; // test

// Use default values for constructor parameters
/[ Set first constructor parameter
// Set both constructor parameters

If a class has a constructor that has mandatory parameters defined, then

wherever an object of the class is created, appropriate parameter values wzust
follow to satisfy the needs of the constructor. In the example above, if the
circle class's constructor had mandatoty parameters for the location and radius

of the circle, then you could not instantiate a circle without including expres-

sions for these parameters.
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Destructors

Sometimes you may have a class of object for which you wish to perform some
type of cleanup operations when an instance of the class is destroyed. For most
normal objects, any necessaty cleanup operations are cartied out by the garbage
collector, which frees up memory for any sub-objects that are used by the freed
object. Certain other types of objects—for example, files or network sockets—
may contain resources for which some special type of finalization is required
when these objects are freed.

For these types of objects, you can provide a special method, known as a
destructor, that is invoked on an object right before it is recycled. Just as
constructors are methods that are always given the name new, destructors are
methods named free. Destructors ate invoked by the garbage collectot, which
is periodically invoked to sweep through the memotry and recycle any unused
objects. The exact time at which a destructor is invoked is not normally detes-
mined by the code because it depends upon when the garbage collector kicks
in to free up memory. If you explicitly invoke the garbage collector, which you
can do by using a renew statement, then you are insured that the destructor
method will be called immediately.

Listing 10-2: Invoking the Garbage Collector and Destructors

do test;

subject thing
does

has

is

verb new; /| constructor
verb free; // destructor

public integer index = 0;
integer counter = 0; // counter of number of objects allocated

verb new is
counter = itself + 1;
write "constructing thing #", counter, ;
index = counter;

end; // new

verb free is
write "destructing thing #", index, ;
counter = itself - 1;

end; // free

write "initializing class", ;
write "initial counter =", counter, ;

end; // thing
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Listing 10-2: Invoking the Garbage Collector and Destructors (Continued)

verb test is
thing type thing is none;
integer counter = 0;

while true do
new thing;
thing is none;
counter = itself + 1;

// collect garbage every 10 iterations

if counter = 10 then
renew; // do garbage collection
counter = 0;
end;
end;
end; // test
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CHAPTER 11
Intermediate
Object-Oriented
Programming

This section examines two of the most important features of object-otiented
programming: znheritance and encapsulation.

Code Reuse and Robustness

In large scale programming projects, you often run into two major problems.
The first is that it is rather difficult to modify and reuse existing code. You can
find existing code for doing just about every imaginable thing. Programs,
however, are very complex, intricately connected things, like the spaghetti wiring
inside of an old stereo system. If you want a particular set of features in your
program, you often find that it is easier (and less error-prone and dangerous)
to rewrite everything from scratch, rather than modify an existing program.
Obviously, this is one reason why software creation is so time consuming and
expensive.

The second problem is that it is difficult to incorporate existing code in a way
that is safe and robust. Often, for example, you have situations where a set of
variables must be initialized correctly before you can safely use a piece of code,
or certain procedure calls must be made in a precise order, or certain variables
may not be modified explicitly without breaking the code. OMAR's encapsu-
lation primitives make it possible to create robust, bulletproof classes that can
be used without being concerned about these issues. Object-oriented
programming is an effort to make code more robust and more reusable through
inheritance and encapsulation.
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Inheritance

e basic idea behind inheritance 1s that you can create classes that are derive
The b dea behind inherit that y te cl that are d d
from existing classes, instead of writing each one from scratch. These derived
classes inherit the functionality of the class from which they are detived (the
parent class), but they may also extend or override the functionality of their
parent class. If a class extends another class, that means that it has additional

ata and/or methods that the parent does not have. If a class overrides its
dat d/ thods that the p t d t h If acl des it
parent class's methods, that means that it has defined methods that take the
place of methods in the parent class and has new, different behavior.

Experienced object-oriented programmers know that one of the most difficult
things about designing well-structured code is building these class hierarchies,
so that each class neither does too much nor does too little. If the class does
too much, then it is overly difficult and cumbersome to use. It may be inefficient
because it contains harmless, but unneeded functionality. If the class does too
little, then you end up with lots of little classes, each only slightly different and
hard to distinguish from others, and the program once again becomes difficult
to understand.

Extending a Class

To add new features to an existing class, you create a new class that extends

the features of the old class. This new class is known as a s#bclass because it is
a more specific version of the more general class that it was derived from. This
terminology may be a little confusing because a subclass actually has a superset
of the functionality of its parent class. A subclass is less general but has more
‘stuff’ than its parent class. To create a new subclass, use the following format:

Figure 11-1: The Basic Subclass Declaration

subject <name>
extends // Class which this class is
<parent class> // derived from
does
<methods> /[ The interface portion:
has // methods and members
) <members> //
is
<implementation>
end;

All classes are consideted to be implicitly derived from a base class, the subject
class. If you don't have an extends clause in your class declaration, thete is an
invisible extends subject clause that is implicitly added for you. Note that when
you extend a class, you inherit not only the functionality of the superclass, but
you also inherit the functionality of every superclass all the way to the root.

The way to think about it is that if class B extends class A, then an instance of
B IS an instance of A. For example, if you have an employee class that extends
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the class person then each employee IS a person. Likewise, if you extend the
employee class by an executive class, then each executive is an employee and is

also a person.

Example: Extending a Class

subject person
does

has

end

// Constructor

verb new

named char name[];
with

integer birthyear = 0;
end; // new

// Methods to retreive private information
integer question get_birthyear;

char name[];
integer birthyear;

// Constructor

verb new
named char name[];
with
_ integer birthyear = 0;
is
write "new person", ;
person's name = name;
person's birthyear = birthyear;
end; // new

/[ Methods to retreive private information

integer question get_birthyear is
answer birthyear;
end; // get_birthyear
; /[ person
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Example: Extending a Class (Continued,

subject employee
extends

person
does

// Constructor

verb new

named char name[];
with

integer birthyear = 0, salary = 0;
end; // new

// Methods to retreive private information

integer question get_wages;

has
integer salary;
is
// Constructor
verb new
named char name[];
with
_ integer birthyear = 0, salary = 0;
is
% Call superclass constructor
person new named name with
birthyear = static birthyear;
end;
// Initialize employee members
write "new employee", ;
employee's salary = salary;
end; // new

// Methods to retreive private information

integer question get_wages is
answer salary;
end; // get_wages
end; // employee
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Example: Extending a Class (Continued,

subject executive
extends

employee
does

// Constructor

verb new

named char name[];
with

integer birthyear = 0, salary = 0, stock_options = 0;
end; // new

/[ Methods to retreive private information

integer question get_wages;

integer question get_perks;
has

integer stock_options;

is
/[ Constructor
verb new
named char name[];
with
_ integer birthyear = 0, salary = 0, stock_options = 0;
is
/[ Call superclass constructor
employee new named name with
birthyear = static birthyear;
salary = static salary;
end;
/[ Initialize executive members
write "new executive', ;
executive's stock_options = stock_options;
end; // new

// Methods to retreive private information

integer question get_wages is
answer salary + stock_options;
end; // get_wages

integer question get_perks is
answer stock_options;
end; // get_perks
end; // executive

-122lqQO a1eIpawIalu|

o
=3
o
S
S
®
<9
=
=
o
@
i
Y
3
3
5
7

Extending a Class 113



Figure 11-2: A Simple Class Hierarchy

class: person

class:

class: employee contractor

v

class: executive

In the example above, you have a simplified class hierarchy that might be used

to represent a corporate hierarchy (for a payroll application, pethaps). The classes
employee and contractor inherit the members and methods of class person. That

means that an employee or contractor can do everything that a person can do
(such as have a name, birthday, social security number etc.). In addition, the

employee and contractor classes have additional capabilities that normal persons
do not have (getting wages, for example). Members of the executive class have

all of these capabilities plus more. For example, only executives can get perks

and have stock options.

Constructor Chaining

When you create a new class by extending an existing class, it inherits all of

the members of that existing class and therefore, you must make sure that the

integrity of those members is maintained. This leads to the requirement that
constructors must be called not only to initialize the members of objects of

their own class, but also to initialize the members of objects belonging to any

classes that are derived from this class. This is known as constructor chaining.

Example: Constructor Chaining

subject subclass
extends
superclass // This is a class with a constructor defined
does
verb new; // This subclass must have its own constructor defined since
has // its superclass has a constructor defined
_ integer stuff;
is
verb new is /| The first line of the subclass's constructor must be a call
superclass new; // to its superclass's constructor to initialize its inherited members
stuff = 0; // After, you can initialize the subclass’s noninherited members
end;

end; // subclass
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The way that constructor chaining is enforced is to require the first line of any
constructor that belongs to a class with a superclass constructor to call that
superclass constructor before doing anything else. In the example hierarchy
above, since an executive is also an employee, which is also a person, whenever
the executive’s constructor is called, it must first call the employee constructor
which must first call the person constructor.

Overriding Methods

Sometimes, when you create a new subclass, you find that an inherited method
does not work quite as you want it to for the new class. In this case, you can
provide a new definition for the inherited method that is more specific to the
new subclass. This process of substituting a new method for one that has been
inherited i1s known as overriding.

To override an inherited method, all you have to do is to define a new method
for the subclass that has the same name and parameters as an inherited method.
When an instance of this derived class calls the method of this name, the new
method will be called instead of the inherited one.

In the example above, the executive class inherits the method get_wages from
the employee class. Since the executive is also an employee, it makes sense that
the executive should also be able to have this procedure. When you further

defined the executive, however, you find that you can provide a more precise
definition of this procedure that is specific to the executive class. In this case,
an executive should also add in stock options when reporting wages. So, you
can see how to use overriding to provide more specific versions of methods
for subclasses when the more general inherited methods are not as precise.

Example: Using Method Overriding

executive type president named "bob" with // Instances of class executive
birthyear = 1942;
salary = 80000;
stock_options = 100000;

end;
employee type manager named "sally" with // Instances of class employee
birthyear = 1972;
salary = 20000;
end;
write "Sally's wages = ", manager get_wages, ; // Calls employee's get_wages method
write "Bob’s wages =", president get_wages, ; // Call executive's get_waves method instead

/] of the employee’s get_wages method
write "Bob's perks =", president get_perks, ;
write "Sally’s perks =", manager get_perks, ; // Compile error - employees have no perks!!!
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Dynamic Binding

When you create a new class using inheritance, you expect that if you have
provided this class with a replacement method to override an existing method
from its parent class, then the new method will be called instead of the old
one. Dynamic binding is the technique that is used internally to make this
happen. Using this technique of overriding methods and using dynamic binding
to select the correct method to use, you can write very generic code and then
let the objects themselves decide the appropriate method implementation to use.

Using the class hierarchy above, suppose that you had to write a program to
compute the payroll from a list of employees. You could have a procedure that
needs to get the wages of each employee. Remember that employees and
executives have different methods for computing this, but that the executive
method overrides the employee method. This means that all you have to do is
to go down the list and call get_wages for each employee and this command
is automatically interpreted differently, depending upon whether it was called
from an employee or an executive. You, as the programmer, do not have to
write special code evetywhete that checks the type of the employee and calls
the appropriate method depending upon the type because this is automatically
taken care of for you in a way that is intuitive and elegant.

Example: Dynamic Binding

employee type secretary named "suzie", salesperson named "maggie", manager named "joe";
executive type president named "leo", ceo named "barb";
integer sum = 0;

// Table of references to employees
employee type staff[] is [manager president secretary ceo salesperson];

// Code to sum wages of staff
for each employee type employee in staff do
// Here, get_wages will either execute the employee's implementation or
// the executive's implementation depending upon the type of the employee

sum = itself + employee get_wages;
end;

Variable Shadowing

Fach new class that you declare may have its own set of members that can be
given any valid names that you choose. A class that extends another class also
inherits the members of the parent class, so this presents a problem. If the new
class declares a member of the same name as a member of the parent class,
then the new member is said to shadow the inherited member. You can no longer
refer to the member of the parent object just by stating its name, because the
name has been appropriated by the new member.
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You can, however, refer to shadowed members by giving the full name of the
member. Recall that when referring to a variable inside of a class, if the variable
name is not found in the method's local variables, then it is assumed implicitly
to be a member of the current class. To specify that what you really want is
the member of the class that you are extending, you just explicitly dereference
the class that you wish to refer to.

Example: Accessing Shadowed Members

subject person

does
verb print;
has
char name[];
integer id;
is
verb print is
write name, " with social security number =", id, ;
end; // print

end; // person

subject employee
extends
person
does
verb print;
has
_ integer id; /[ Shadows person's id
is
verb print is
// Implicitly refers to person's name (because there is no employee name member)
write name;

/[ Explicitly refers to person's id
write " with social security number =", person's id, ;

// Implicitly refers to employee's id
write "and employee identification number =", id, ;
end; // print
end; // employee

Method Overriding Vs. Member
Shadowing

When you declare a new class, you may declare new methods with the same
names as methods of the parent class. This is called overriding. You can also
create new members with the same names as members of the parent class.
This is called shadowing. Since these two situations arise from similar circum-
stances, it may be easy to get them confused. However, method overriding

-122lqQO a1eIpawIalu|

o
=3
0]
=
-
[
o
-
-
=}
[o°]
=
Y]
3
3
=]
oQ

and member shadowing are resolved in distinctly different ways, so it is
important to understand the difference.

Method Overriding Vs. Member Shadowing 117



When methods are overridden, the way that the correct method is determined
is at run time depending upon the type of the object (this mechanism is called
dynamic binding). In the case of shadowed variables, however, the determination
of exactly which variable is referenced is determined completely at compile time.
This is the crucial difference. Variables ate determined at compile time and
methods are determined at run time.

Listing 11-1: Method Overriding Vs. Member Shadowing

do test;

subject A
does
integer question get_value;
has
_ public integer i = 1;
is
integer question get_value is
answer i;
end; // get_value
end; // subject A

subject B
extends
A
does
integer question get_value;
has
_ public integer i = 2;
is
integer question get_value is
answer i;
end; // get_value
end; // subject B

verb test

is
A type A is none;
BtypeB;
write "B'si=", B's|, ; // References B's i, prints 2
write "B's value =", B get_value, ; // Calls B's get_value, prints 2
Ais B;
write "A'si=", A'si, ; // Still references A's i, prints 1
write "A's value =", A get_value, ; // Calls B's get_value, prints 2

end; // test

Type Casting

Sometimes it is desirable to convert between objects of related types. This is
useful when you need a piece of code to handle the most general possible case
for a family of related types of object. For example, you could write a piece of
code that stored objects of your person class into a directory. When you entered
objects into this directory, you could enter persons, but you could also enter
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employees or executives because they ate, after all, persons. When you removed
the persons from the directory, however, you would have to explicitly convert
them to the appropriate type, because, though all executives are persons, for
example, not all persons are executives.

When you cast one type to another type, a check is made to make sure that
the types are actually compatible. If this is not true, then a run-time error occurs.
An object may only be cast to a related type in its class hierarchy. If an attempt
is made to cast a type to a totally unrelated type, then a compile-time error is
issued, since this may never be performed. A type cast is formed by placing the
name of the type that you wish to cast to, followed by the keyword type, in
front of the name of the object that you wish to cast. This returns an object
of the desired type or issues a run-time error if the object is not of the desired
type at the time the cast is performed.

Example: Implicit & Explicit Casting between Related Types

person type person is none;

employee type manager named “garth”;
executive type ceo named “bill";

circle type circle is none;

person is manager; // OK because all employees are persons
person is ceo; // OK because executives are persons
ceo is person; // Compile error- a person is not necessarily

// an executive - a cast must be used to check

ceo is executive type person; /[ Cast is essential because all persons are not executives
// This may cause a run time error if the person referred to
/[ is not actually an executive - in this case it won't because
// from the lines above, you can see that person refers to
// an executive.

circle is circle type person; /[ Compile error - a person may never be cast to type
// circle since they are unrelated.

Type Querying
Sometimes, instead of attempting to blindly cast one object type to another
object type, you would like to test the type of the object first to see if it is
suitable for the operation you’re attempting to perform.

When quetying the type of an object, you can only test to see if an object is
of a related class. If you try to test for an object being of a totally unrelated
class, then a compile-time error results because this can never be true. For
example, you can test to see whether an object of type person is of type
executive because sometimes, a person may be also be an executive. If you try
to test whether a person is of type circle, howevet, a compile-time etror results
since this can never be the case.
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A type query returns a boolean value and is formed by placing the name of the
type to query for, followed by the keyword type and the name of the object
that you wish to query. The type querying function is very much like the
instanceof operator in Java.

Example: Type Querying

person type worker is none;
employee type manager;

executive type ceo;
worker is manager; /] Ok because employees are persons
worker is ceo; // Ok because executives are persons

if executive type worker then
// Cast person to executive before calling executive method on person

/
y write “executive perks = ", executive type worker get_perks, ;
end;

if circle type worker then /| Compile-time type querying error
y write “person’s radius =", circle type worker get_radius, ;// Compile-time type casting error
end;

Encapsulation

One major source of bugs in programming is inadvertent misuse of variables.
The basic aim of encapsulation is to shield data belonging to an object from
unwanted tampering from other areas of the program. Since a class description
knows which methods belong to the class, it can grant access to the object's
private variables only to those methods that have a legitimate right to change
those variables. This makes it possible to cteate solid, 'bulletproof' objects that
may have arbitrarily complex inner workings but are immune to being broken
by accidentally or purposefully changing variables that are only intended to be
used in certain ways.

For example, suppose you have a symbol table object that has methods for
storing and retrieving names and for telling you how many names it contains.
In order to keep track of the number of names in the table, the table object
needs a counter member that is incremented by one each time you add a name
to the table. The only time you want this counter changed is when a name is
added to the table; otherwise, this variable should be left alone. By creating a
class, you shield this variable from unwanted tampeting and don't have to worty
about the possibility of another part of the program changing this counter by
mistake. This is what encapsulation is all about.

Public & Protected Members

Fach class has a collection of members that are used internally by the methods
of the class, but may or may not be intended to be seen outside of the class.
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By default, the members of a class are hidden from tampering from outside of
the class because that is safer. These members are said to be protected. 1f you
wish to grant access to a class's members from outside, you must designate
those members as public. Public members may always be accessed and are
therefore similar to the fields of a structure, which are always implicitly public.

Example: A Class with Public and Protected Members

subject circle
does
verb new
at vector location = <0 0 0>;
with
scalar radius = 1;
end;
scalar question get_area;
has
public vector location; /[ This is a public member
scalar radius, radius_squared; // These are protected members (by default)

verb new
at vector location = <0 0 0>;
with
scalar radius = 1;
is
circle's location = location;
circle's radius = radius;
circle's radius_squared = radius * radius;
end; // new

scalar question get_area is
answer (3.14159) * radius_squared;
end; // get_area
end; // circle
Example: Accessing Members of a Class with Protected Field

circle type circle at <0 0 1> with

radius = 10;
end;
circle's location = <0 0 10>; // Move circle
circle's radius = 20; // Compile error -

// The circle's radius can not be accessed like this because it is protected.
// The reason for this member being protected is that whenever radius is
// changed, radius_squared should be changed also to keep the members
// of the circle consistent.

Although the radius member of the circle class may not be accessed from any
arbitrary location in the program like the public members, there is one place
outside of the class declaration where it can be accessed: inside the declarations
of subclasses of the circle class. The scope of a protected member includes all
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classes that are derived from the class in which the protected member was

declared.

Example: Accessing the Protected Field of a Parent Class

subject ellipse
extends
circle
does
verb new
at vector location = <0 0 0>;
with
scalar major_radius = 1, minor_radius = 1;
end;
scalar question get_area;
has
scalar minor_radius;

verb new
at vector location = <00 0>;
with
_ scalar major_radius = 1, minor_radius = 1;
is
ellipse's location = location;
ellipse's radius = major_radius;
ellipse's radius_squared = radius * radius;
ellipse's minor_radius = minor_radius;
end; // new

scalar question get_area is
answer (3.14159) * radius * minor_radius;
end; // get_area
end; // ellipse

Private Members

// Access public member of circle class

// Access protected member of circle class
// Access protected member of circle class
/] Access protected member of ellipse class

In the example above, you can see how the radius member is hidden from

general access but is allowed to be accessed from derivatives of the circle class.

There are some cases, however, whete you may have members that are only

relevant to a particular class and will not be relevant even to subclasses that are

derived from that class.

Imagine that you decide to precompute the circle area and store it in a member
of circle. Although the circle radius is relevant to ellipses, the circle atea is not
really of any use to the ellipse class, so you might as well make it private to the

circle class. Private members of a class ate only visible inside of the declaration

of their own class and nowhere else.
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Figure 11-3: The Basic Subclass Declaration

subject <name>
extends

<parent class>
does

<methods>
has

<public and protected members>
private
_ <private members>
is

<implementation>
end;

Note that the syntax for declaring private members is slightly different from
the syntax for declaring public or protected members. The private members are
set aside from the public and protected members in their own section. The
reason for this is that there are no citcumstances in which a person who is
using a class needs to know about the private members of that class. If a person
is simply using a class, then they need to know about only the public members
and if a person is extending a class, then they need to know about the public
and protected members. Only the original implementer of the class needs to
know about the private members of that class, however, so these members ate
set apart from the true interface portion of the class.

Example: A Class with Public, Protected, and Private Methods

subject circle
does
verb new
at vector location = <00 0>;
with
scalar radius = 1;
end;
scalar question get_area;
has
public vector location; /[ This is a public member
scalar radius, radius_squared; // These are protected members (by default)
private
scalar area; // This is a private member
is
verb new o =
at vector location = <0 0 0>; o5
with z 3
 scalar radius = 1; a8
= . . Ig
circle's location = location; S =
circle's radius = radius; c{ﬂ o
circle's radius_squared = radius * radius; 35
circle's area = (3.14159) * radius_squared; 3 g'
end; // new R
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Example: A Class with Public, Protected, and Private Methods (Continued)

scalar question get_area is
answer circle's area;
end; // get_area

end; // circle

Public & Protected Methods

Although it is generally less useful to testrict access to a class's methods than
it is to restrict access to a class's members, you might occasionally find it conve-
nient to do so. For example, sometimes a class provides special access functions
that are useful to subclasses but that are not generally to be used by users of
the class. Access to a class's methods is restricted in a way similar to class
member restriction: by placing a visibility modifier before the declaration.

By default, the methods of a class are public. You may make them protected
by placing the keyword protected before their declarations in the interface. Note
that this default is the opposite of the default for members, which are protected
by default. This makes sense because it is generally less important to protect
methods than to protect members and also because methods are most often
public, since they are the preferred way to interact with a class rather than to
access the members.

Example: A Class with Protected Methods

subject circle
does

has

verb new // A public method (by default).
at vector location = <0 0 0>;

with
scalar radius = 1;

end;

/[ A protected method (note the 'protected keyword).
// This method may only be called inside of methods
// of this class or of a class derived from this class.
protected scalar question get_area;

public vector location; /[ This is a public member
scalar radius, radius_squared; // These are protected members (by default)
verb new

at vector location = <00 0>;
with

scalar radius = 1;
is

circle's location = location;

circle's radius = radius;

circle's radius_squared = radius * radius;
end; // new
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Example: A Class with Protected Methods (Continued)

scalar question get_area is
answer (3.14159) * radius_squared;
end; // get_area
end; // circle

Private Methods

Private methods are methods that are used only in the implementation of a
class and are of no concern to users of the class or even to subclasses of this
class. Private methods are distinguished from public or protected methods of
the class by being defined solely inside of the implementation portion of the
class declaration, and have no forward declaration in the interface portion.

Example: A Class with a Private Member

subject circle
does
verb new // A public method (by default)
at vector location = <00 0>;
with
scalar radius = 1;
end;
has
public vector location; // This is a public member
scalar radius, radius_squared; // These are protected members (by default)

verb new
at vector location =<0 0 0>;
with
scalar radius = 1;
is
circle's location = location;
circle's radius = radius;
circle's radius_squared = radius * radius;
end; // new

scalar question get_area // This is a private method because it does not
is // have a forward declaration in the interface
answer (3.14159) * radius_squared;  // portion listed at the top of the class declaration
end; // get_area
end; // circle
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Summary of Access Levels

As a general rule, you should use the highest level of protection for a member
or method that you can, without restricting the class's functionality. Here is a
table summarizing the visibility of a class's methods and members under differing
circumstances:

Table 11-1: Summary of Access Levels
visible inside of its own class Yes Yes Yes
visible inside of a subclass Yes Yes No

visible anywhere in the

program Yes No No
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CHAPTER 12

Advanced
Object-Oriented
Programming

Objective Methods

Sometimes there are situations where you have methods belonging to a class
that are not specific to a particular object. In the following example, the circle
class includes a counter for the number of circles that have been created, and
a method for returning the value of this counter. Since this method returns the
value of a property of the class as a whole, and not of a particular object, then
you have no need to call the method from a particular object. If you define the
method as a normal method, then, as previously described, an implicit object
reference would be passed to the method which would just be ignored. Although
no harm would be done aside from the extra overhead needed to pass the
reference, it is not really a good idea because it would make the method less
versatile since you would always need to call it from a object.

The best solution is to designate these special case methods as taking no implicit
parameters even though they belong to a particular class. These methods are
referred to in Java as either class or static methods. In OMAR, class methods
are called objective methods and are designated by preceding them with the
keyword objective because when they are called, they requite no subject instance.
By contrast, you can think of the normal methods of a class as subjective
methods because they depend upon the particular subject instance with which
they are called.

The important thing to remember is that since objective methods do not take
an object as an implicit parameter like normal methods, they may not refer to
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any of the class's members. They may, however, refer to any class variables
listed in the implementation section of the class since these are not specific to
each individual object but instead are instantiated once just like normal variables.

Example: A Class with Objective Methods

subject circle
does
verb new with
scalar radius = 1;
end;
objective integer question get_number;
objective verb write_number;
has
scalar radius;

integer number_of circles = 0;

verb new with
scalar radius = 1;

is
circle's radius = radius;
number_of_circles = itself + 1;
end; // new

objective integer question get_number is
answer number_of_circles;
end; // get_number

objective verb write_number is
write "number of circles =", number_of_circles, ;
write "radius of circle = ", radius, ; /[ Error - cannot refer to members of the object
end; // write_number
end; // circle

Since these objective methods are not specific to an object, the question is: how
are they called? To call an objective method, you must precede the method
name with the name of the class, followed by the 's operator, instead of just
the name of an object. The full name of any type consists of the name given
to the type in the declaration followed by the keyword type to signify that it is
the name of a type and not a variable.

Example: Calling Objective Methods

integer i;
circle type's write_number; // calling a verb method
i = circle type's get_number; // calling a question method

Reference Methods

Normally, an object reference is passed to each method in a class, which enables
the method to access the members of the object. What if you want the method
to change not just the object’s members, but the actual object reference from
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which the method was called? If you simply change the reference that is passed
to the method, it will only change the local copy of the reference that is used
inside of the method and will not actually change the outside object reference
from which the method was called. You need to use a reference method. A reference
method has a link to the actual reference from which the method is called,
instead of simply a copy of it. Using this external link, changes to the internal
object reference are reflected outside of the method in the variable from which
the method was called. This mechanism effectively makes the implicit object
variable a reference parameter.

Example: Using a Reference Method

do test;

subject thing
does
reference verb nuke;
reference verb swap
thing type reference thing2;
end;
has
public integer i;

reference verb nuke is
thing is none;
end; // nuke

reference verb swap
_ thing type reference thing2;
is

thing type temp is thing;

thing is thing2;
thing? is temp;
end; // swap
end; // thing

verb test is
thing type thing, thing1, thing2;

// use reference method to set reference to none
thing nuke;

// thing should be none after above method call
if thing is none then
write "unallocated thing", ;
else
write "allocated thing", ;
end;

/[ use reference method to swap references

thingl's i = 10;

thing2's i = 20;

write "thing1, thing2 =", thingl's i, ", ", thing2's i, ;

thing1 swap thing2;

write "thing1, thing2 = ", thingl's i, ", ", thing2's i, ;
end; // test
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Disabling Dynamic Binding
There are occasional instances when you need to be able to deactivate the
dynamic binding mechanism so that you can explicitly tell the compiler which
method implementation to invoke. For example, you might override a method
with a new method, but still wish to call the old method from within the new
method. In this case, any references to the old method will automatically refer
to the new method because of the dynamic binding mechanism and infinite
recursion will result. Static binding lets you bypass this mechanism to say exactly
which method implementation to call. To force static binding, place the keyword
static between the object and its method call.

Example: Disabling Dynamic Binding

subject figure
does
verb init;
has
vector color;
is
verb init is
color=<111>;
end; // init
end; // figure

subject circle
extends
figure
does
verb init;
has
scalar radius;
is
verb init is
circle's radius = 1;
figure static init; // without the 'static' keyword to force static binding, this
// would call circle's init which would result in infinite recursion
end; // init

end; // circle

Final Methods

Some methods have definitive implementations and should not be overridden.
For example, if you have something like a vector or matrix class, then there is
only one mathematical definition for the operations that may be performed on
this kind of entity, so it is unlikely that you will ever want to override these
methods.

In cases where you know that a method will not be overridden, there are certain
optimizations that may be performed on the method calls. In particular, static
binding may be used instead of dynamic binding which results in slightly speedier
method invocation. In order to tell the compiler that a method will not be
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overridden, label the method as final. The final keyword comes ditrectly before
the name of the method. For example:

Example: Final Method Declaration

subject circle
does
final scalar question get_area;
has
scalar radius;
is
scalar question get_area is
answer (3.14159) * radius * radius;
end; // get_area
end; // circle

Final Classes

Sometimes an entire class is the complete and definitive description of something
and should not be extended by any subclasses. For example, if you have
something like a vector or matrix class, then, because there is only one mathe-
matical definition for these concepts, these classes need not be extended in any
way. If an entire class is known to be the final definition, then every method
in the class will be the final implementation. In this case, the class may be
labelled as a final class and then every method in the class will be optimized as
a final method.

Example: Final Class Declaration
final subject circle
oes
/[ all methods are implicitly final methods
scalar question get_area;

has ‘
scalar radius;

is
scalar question get_area is
answer (3.14159) * radius * radius;
end; // get_area
end; // circle

Abstract Methods

Sometimes when you have a set of classes, you find that they share a common
set of features. The correct thing to do in such a case is to factor out common
members and methods into a base class from which the others inherit the
common features. When the implementation of these common features is
actually specific to each subclass, however, you can't really provide a valid
implementation for the base class. In this case, you would like to specify an
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understanding that any class that extends this class must provide its own imple-
mentation. Methods of this type are called abstract methods because they lack any
implementation.

Abstract Classes

Any class that contains abstract methods must be labelled as abstract. Abstract
classes may contain abstract methods and non-abstract methods. Abstract
method declarations in a an abstract class’s interface section are preceded by
the keyword abstract. When a non-abstract class extends an abstract class, it
must provide an implementation for each of the abstract methods.

Abstract classes are also different from normal classes because they may not be
instantiated. It doesn't really make sense to cteate an instance of an abstract
class because the class is not yet fully defined, since its methods have no imple-
mentations. You may, however, have references to an abstract class that can be
directed to refer to instances of any non-abstract class that is derived from the
abstract class. Abstract classes ate meant to provide a mechanism for defining
a specification for a set of features of a class without actually defining the details
of the class.

Figure 12-1: An Abstract Class Declaration

abstract subject <name>
extends
<parent class>
does
<abstract and non-abstract methods>
has
) <members>
is
<implementation of any non-abstract methods>
end;

Abstract classes might not have an implementation section. If all of an abstract
class’s methods are abstract, then there is no implementation section. If the
abstract class contains some non-abstract methods, however, an implementation
section is required to define the implementations of these methods.

For example, suppose you’re creating a set of classes for defining geometric
figures. You know that each figure must have methods for things like deter-
mining the area and circumference. Since these properties are unique to each
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kind of figure that you may choose to create, there is no general implementation
of these methods for the class figure. This calls for an abstract class.

Example: An Abstract Class

abstract subject figure
does
h abstract scalar question get_area;
as
const scalar pi = 3.14159;
end; // figure

subject square
extends
figure
does
scalar question get_area;
has
scalar length = 1;
is
scalar question get_area is
answer length * length;
end; // get_area
end; // square

subject circle
extends
figure
does
scalar question get_area;
has
scalar radius = 1;

is
scalar question get_area is
answer pi * radius * radius;
end; // get_area
end; // circle

Example: Instancing Subclasses of an Abstract Class

figure type figure is none; // abstract class — no instances allowed
circle type circle; // instances of non-abstract classes (circle and square)
square type square; /| which extend the abstract class, figure

figure is circle;
figure is square;

write "figure's area =", figure get_area, ;  // calling an abstract method

Interfaces

The ability of one class to extend another class allows new forms of expression
in terms of specifying your data. Fach class can only extend one other class,
however. Sooner or later, however, you are going to run into the situation
where you want a class to inherit functionality from two different sources.
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This presents a problem. If you wete to allow a class to inherit methods and
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data from two different classes, it would bring up a number of issues. For
example, when methods or members of the same name are inherited from both
classes, how do you decide between them. Also, there are a number of imple-
mentation difficulties associated with what is called multiple inheritance. OMAR
has chosen the same approach as Java in attempting to sidestep these issues.

There is a problem with inheriting methods and data from multiple sources,

but it turns out that there is no problem with inheriting abstract methods or
constants from multiple sources. Because of this implementation issue, OMAR
has a special type of class, similar to an abstract class, which consists of only
method interfaces (abstract methods) and constants. This is called an interface.
An interface is declared similatly to a class.

Figure 12-2: An Interface Declaration

interface <name>
does
<implicitly abstract methods>
has
<constant members>
end;

Note that since all of the methods of an interface are implicitly abstract, there
is never any need for an implementation section. Also, note that only constant
members are allowed as members of an interface. When a class inherits from
an interface, the syntax is similar to the mechanism for inheriting from a class,
except instead of listing the interfaces in the extends clause with the patent class,
you list them afterwards in a separate clause indicated by the keyword
implements. Although only a single parent class may be listed after the keyword
extends, multiple interfaces may be listed, separated by commas, in the imple-
ments clause.
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Figure 12-3: A Class Inheriting from a Parent Class and Interfaces

subject <name>
extends

<parent class>
implements

<interfaces>
does

<methods>
has

<members>
is

<implementation>
end;

Since interfaces only contain abstract methods, a class that implements an
interface must provide its own implementation for each of these methods. You
can also create references to interfaces, just like you can create references to
abstract classes, even though you cannot create actual instances of these types.
An interface is basically like a promise to implement a number of methods.
Each class that implements an interface must carry out this promise and
therefore is allowed to be considered as a subclass of this interface because it
is guaranteed to be a superset of the interface's functionality.

Using Constants in Interfaces

Another useful application of interfaces is to package groups of constants. By
putting the constants in an interface, you avoid the potential name clashes that
you might have if you just had the constants declared as global variables. Since
each class may implement as many interfaces as it likes, it can implement any
number of these constant packages.

Example: Using Constants in Interfaces

interface math_constants
has
const scalar pi = 3.1415926;
const scalar e = 2.71828;
end; // math_constants

interface physics_constants
has
const scalar planks_const = 6.626 * (10 ~ -34);
const scalar boltzmanns_const = 1.381 * (10 / -23);
end; // physics_constants
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Example: Using Constants in Interfaces (Continued,

subject thing
implements
_ math_constants
is
verb write_constants is
// This constant can be accessed directly because this class
/[ implements the math_constants interface

write "pi =", pi, ;

// This constant must be accessed through the name of
// its interface because this class does not implement
// that interface (physics_constants).

write "plank’s constant = ", physics_constants type's planks_const, ;
end; // write_constants
end; // thing

Static Initializers

You've seen how a class can specify a constructor method to initialize the
members of an instance of a class whenever an instance is created. Sometimes,
however, the class may have static data that needs to be initialized at the start
of the program when the class declaration is encountered. The best way to
accomplish this is with a static initializer. A static initializer is a section of code
that is executed once, when the class is initialized at the start of the program.
Static initializers are ideal for creating things like lookup tables that persist
throughout the life of a class. The static initializer is a block of statements that
is located after all other declarations in the class, so it is the very last section
of the class declaration.
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Listing 12-1: A Static Initializer

do test;
include "math.ores";

subject quiktrig
does
objective scalar question quiksin
scalar x;
end;

scalar table[1..360];

objective scalar question quiksin
scalar x;
is
answer table[trunc x mod 360];
end; // quicksin

// static initializer

for integer counter = 1 .. 360 do
table[counter] = sin counter;
end;
end; // quiktrig

verb test is
write "quick sin of 30 =", quiktrig type's quiksin 30, ;
write "quick sin of 60 =", quiktrig type's quiksin 60, ;
end; // test
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Glossary

Algorithm

An algorithm is a set of instructions or
steps that tell how to perform a certain
task. Since computer programs are
encoded as a series of explicitly defined,
discrete steps, they are a good example
of the use of algorithms. The term,
algorithm, refers to the seties of steps that
are involved instead of the actual
computer program itself. The computer
program is a way of encoding the
algorithm, although the algorithm could
also be expressed in another computer
programming language or a language
such as English.

Argument

In a mathematical sense, arguments are
the values passed into a function. For
example, in the function call, sin (50),
the argument of the function is 50. In
OMAR, arguments to procedures are
typically
arguments are the text commands passed

called  parameters.  Program

into a program from a command line or
HTML code.

B
Boolean

Boolean algebra is a system developed
by George Boole to express logical
relations. Boolean algebra takes as
arguments Boolean values, which can be
either true or false, and combines them
using the operators, not, and, and or to

yield Boolean results.

Conditional Statement

Conditional statements ate statements
that test if a certain condition is true
and if so, performs some action. The
test is done by evaluating a Boolean
expression to yield a Boolean value and
the statements are executed depending
Boolean

upon the wvalue of the

expression.

Complex Numbers
The complex number system was
developed to provide for the represen-

tation of the roots of negative numbers.
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Typically, square roots ate only defined
for positive numbers, and the square
root of a negative number is undefined
because there are no real numbers
which, when squared, yield a negative
number. The complex number system
introduces a new number, designated 7,
which is defined to be the square root
of -1. Then, when you ask what the
square root of -9 is, the answer is 3/
because 3° is 9 and / is -1, so (31)2 is -9.

All complex numbers may be expressed
in the form (a + (b * 7)) where a is the
real part and b is the imaginary part. This
system may at first seem arbitrary and
useless, but complex numbers find a
number of wuses in science and
engineering and are the basis of the
fractal images that come from the
mathematical entity known as the

Mandlebrot set.

Cross Product

The cross product is a mathematical
operation that is defined between two
three- dimensional vectors. The result is
a new vector that is perpendicular to
both of the other two vectors. The
length (magnitude) of the cross product
is equal to the product of the lengths of
the two operands times the sine of the
angle between them. The cross product
is sometimes called the vector product
because the result is a vector. The cross
product is calculated as follows:

vectorl: (abc)
vector2: (d e f)

vectorl cross vector2 = (i j k)
where

i=(bf)-(ec)
j=(cd)-(af)
k=(ae)-(bd)

Dot Product

The dot product is a mathematical
operation that is defined for two vectors
of any dimension. The result of a dot
product is always a scalar, so the dot
product is sometimes called the scalar
product. Geometrically, the length of
the dot product is equal to the product
of the magnitudes of the operands times
the cosine of the angle between them.
The dot product of a vector with itself
is therefore equal to square of its length.
To compute the dot product, you
compute the product of each
component of one vector and the corre-
of the other
vector and sum them all together. For
two three-dimensional
compute the Dot Product as follows:

sponding component

vectors, you

vectorl:

(Ug Uy U3)
vector2:

(Vi vyv3)

vectorl dot vector2 =
(ug *vp) + (up * vo) + (U3 * v3)
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E

combinations  of

Expression
Expressions  ate
variables using operators and functions
to yield new values. An expression is
like one half of a mathematical formula.
For example, the expression, (5 + (3 *
5)), is an expression that evaluates to the
value, 20. Expressions can always be
evaluated to yield values. The type of
data that is generated by the expression
is often used to describe the expression,
so you may have Boolean expressions,
scalar expressions, etc. Expressions
require that the proper type of data is
used with the operators so some expres-
stons are not valid. For example, the
exptession, (true * 3) is invalid because
you can not use Booleans with the
multiplication operator.

F
Function

A function, in its mathematical sense, is
a relationship that maps elements from
one set into elements of another set. For
example, the sine function takes any
scalar number an maps it to a corre-
sponding value between -1 and 1 on the
sine curve. A function, in the context of
computer programming, has a similar
meaning. In place of an abstract mathe-
matical relationship, a piece of code
performs  some  operations  on
arguments and returns a value. The
value depends upon the values of the
arguments and the sequence of opera-

tions that are encoded in the function.

Global Variable

A global variable is a variable that can
be accessed anywhere in a program. The
code of a program is normally divided
into various procedures, each of which
may have its own local variables that
only it can access. Because all proce-
dures can access global variables, global
variables can be used to share data
between different
Generally, though, it’s a good idea not

procedures.

to use global variables if they can be
avoided. Because global variables can be
changed anywhere in the program, it’s
more likely that their values could be
accidentally changed, causing obnox-
iously cryptic bugs.

Identifier

An identifier is any name that you
supply for a variable, procedure, or any
other user- defined entity requiring a
name. The rules for creating new identi-
fiers are that (1) they must not match a
reserved word, and (2) they must begin
with a letter and may be followed by
letters, numbers,
In addition, the identifier
must be unique, meaning that there are
no other identifiers with that name that

or the underscore
character.

are declared in the same scope.

Imaginary Numbers

Imaginary numbers are numbers that are
formed by taking the roots of negative
numbers. All imaginary numbers can be
expressed as the product of a real
number times the number 7 which is
defined as the square root of -1.
Imaginary numbers form the imaginary
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When
imaginary numbers and real numbers are

part of complex numbers.
added together, the result is a complex
numbert.

Integer

Integers are the set of all negative and
positive whole numbers, including zero:
-1, 0, 1, 2, 3, etc. Integers are sometimes
called the counting numbers. Integers
are a subset of real numbers and
complex numbers. Real numbers
(scalars) differ from integers in that real
numbers may have a fractional part.
Complex numbers differ from integers
because complex numbers have an
imaginary part that integers are not

capable of representing.

Keyword

Keywords are identifiers that serve to
indicate  that
following the keyword. Keywords can
be used in OMAR procedure calls to
indicate that some parameter values are

something special 1is

following. For example, in the
procedure call rotate by 50 around <0 0
1>, the keyword by signifies that an
angle measure follows and the keyword
around signifies that the axis of rotation
follows. The use of keywords can make
procedure calls much more readable
because they intersperse words with the
numerical values.

Local Variable

A local variable is a variable that exists
only inside the scope of a particular
procedure. Local variables encourage
better, safer programming because if a

variables only live within a single
procedure, you don’t need to worry
about other procedures inadvertently
changing them. Almost all variables in
a typical procedural language are local

variables.

Parameter

A parameter is a number that defines an
instance of an object. Parameters are
passed into procedures, and, if the
procedure does not rely on any global
conditions, the parameters completely
behavior of the
procedure. Similarly, if two objects are

determine  the

created with the same parameters, then
they will be
function as a sort of interface to link

identical. Parameters
various procedures together in a struc-
tured way.

Precedence

Precedence, in its mathematical sense, is
the order in which operators are applied
to data. Instead of simply being applied
in a left-to-right order, some operators
take precedence over others and are
always applied first no matter where
they come in the expression. For
takes prece-
dence over addition, so the expression
(5 + 4 * 3) will be evaluated as (5 + (4
*3)) = (5 + 12) = 17 instead of (5 +
4) * 3) = (20 * 3) = 60. If two operators
have the same precedence level, then

example, multiplication

they are applied in a left-to-right order.

Procedure

A procedure is a delimited section of a
program that is designed to do one
particular task. Procedures in OMAR
come in a variety of flavors that each
have certain restrictions and capabilities
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tasks. The
different types of procedures are verbs,

to accomplish different

questions, shaders, shapes, pictures, and
anims.

S
Scalar

A scalar is any number with or without
a fractional part. In mathematics, these
are known as real numbers. Real
numbers include the set of integers, or
whole numbers; rational numbers,
which can always be expressed as a ratio
of whole numbers; and transcendental
numbers, such as TU or e, which can not
be written as finite expressions of whole

numbers.

SMPL
The programming language that was
later called SAGE, and is now OMAR.

String

A string, in computer programming, is
simply a set of characters grouped in an
array. Strings are used to hold text.

V
Variable

In computer programming, a variable is

a single storage unit for data, labelled by

a unique identifier. Computations are
done by performing various mathe-
matical or logical operations on the
variables and moving data around
between the variables. All of the data
that the computer program knows about
must be stored in variables. There are
different types of data that can be repre-
sented, such as Booleans, characters,
integers, scalars, complex numbers, and
vectors. Each variable is of a certain
type that may not change, and variables
of one type may not hold values of any
other type.

Vector

A vector is a quantity that has both a
magnitude and a direction. Vectors are
useful for specifying directions and
locations in space. Since space has three
dimensions, OMAR vectors have three
scalar components, although vectors
with mote dimensions could be defined.
Operators such as addition and multi-
plication are also defined for vectors as
well as some new operators such as dot
product and cross product. Since human
eyes are sensitive to three primary
colots, vectors can also be used to
define colors.
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abs function 24
abstract classes 132
abstract methods 131
accessing
array elements 72
fields of a struct 92
members of an object 103
acos function 24
Ada programming language 4
algorithm 139
allocation
explicit 95
implicit 6
and operator 19
anims 14
answer statements 49
apostrophe s operator 92
architecture independence 3
arguments 139
arrays
accessing array elements /2
allocation 6
as reference types 71
assigning by reference 76
assignment

of sub-arrays 81

Index

creating 72

dynamic 73

expressions of 75

freeing 96

max 74

min 74

multidimensional 77

non-square 78

num 74

of arrays 78

referring to none 71

resizing 81

smart arrays 6,74
asin function 24
assignment

of arrays 75

by reference 76

of structures 93

of sub-arrays 81
assignment operators 29, 30
assignment statements 29
atan function 24

B

base class, the 110
binding, dynamic 116
disabling 130
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block comments 16
boolean 139

data type 18

operatotrs 19
break statements 43
byte

data type 21

math functions 22

operatotrs 22

C

C programming language 1, 3
C++ programming language 1
case sensitivity 11
case statements 37
casting 118
char
char-integer conversion functions
20
data type 20
classes 99
abstract classes 132
constructors 104
destructors 105
extending 110
final classes 131
hierarchies 110
interfaces of ©, 100
members 99
accessing 103
shadowing 116
methods 99
invoking 102
overriding 115
summary of access levels 125
command line arguments 84
comments 15
compact expressions 31
complex
data type 24
extracting the components of 25
operatotrs 25
complex numbers 139
components
of a complex 25

of a vector 26
conditional statements 34, 139
constants 27
as parameters 64
in interfaces 135
constructors 95, 104
continue statements 43
cos function 24
cross product 140
cross product operator 26

D

data hiding 120
data types 18
enumerated types 89
primitive 6
structures 91
declarations 13
of arrays 12
of classes 100
of constants 27
of data 13
of procedures 14
of reference variables 27
of structures 92
of types 14
of variables 17
derived classes 110
destructors 105
dim statements 73
div operator 22
do keyword
in program header 12
does
operator 30, 66
section of class interface 100
dot product 140
dot product operator 26
double
data type 23
math functions 24
operators 23
dynamic allocation 95
dynamic arrays 73
dynamic binding 116
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disabling 130

E

encapsulation 109, 120

summary of access levels 125

enumerated types 89

exception handling 7

exit statements 45

exp function 24

exponents 24

expressions 30, 141
array expressions /9
compact expressions 31

short-circuit expressions 32

expressiveness 4
extending a class 110
extends keyword 110

F

fields
of a class 99
of a structure 92
files 12
final classes 131
final methods 130
final parameters 65
final variables 65
floating-point numbers 23
for statements 40
for-each statements 42
format 11
forward declarations 6
free formatting 11
freeing objects 96
function pointers 66
functions 49, 141
integer math functions 22
scalar math functions 24

G

garbage collection 94, 96

general purpose 3
global declarations 47
global scoping modifier 62

global variables 7,47, 141
problems with 51

H

header 12

iabs function 22
identifiers 10, 141
if statements 34

if-then 35

if then-else 35

if-then-elseif 36

if then-elseif-else 37
imag function 25
imaginary numbers 141
implements clause 134
include directive 15
infinite loops 40
inheritance 109, 110
initializers 95

static initializers 136
instances

of a class 101
integer 142

data type 21

math functions 22

operators 22
interfaces 133

of classes 6, 100

of procedures 51
is operator 19, 20, 29
isn’t operator 19

isqr function 22
its 32

itself 32
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J

Java programming language 2, 3

K

keyword 142

keyword parameters
mandatory 57
optional 58

L

line comments 16
In function 24
local declarations 47
local variable 142
log function 24
long
data type 21
math functions 22
operatotrs 22
looping statements 39

M

mandatory keyword parameters 57
mandatory parameters

math.ores 22, 24
max 74
with multidimensional arrays 78
member shadowing 116
verses method overriding 117
members 99
accessing 103
private 122
protected 120
public 120
summary of access levels 125
memory
allocation 95
explicit 95
implicit 6
management 5

methods 99

abstract methods 131

final methods 130

invoking 102

objective methods 127

overriding 115

private 125

protected 124

public 124

reference methods 128

summary of access levels 125
min 74

with multidimensional arrays 78
mod operator 22
multidimensional arrays 77
multiple procedure calls 69
multiple references 96

N

nested arrays /8
nested scopes 47
new statements 95
none 27, 94

not operator 19
null 27

num 74

with multidimensional arrays 78

O

objective methods 127
object-otiented programming 5, 99
encapsulation 120
inheritance 109
objects 101
accessing members 103
allocation 6
creating 102
creating dynamically 95
creating multiple references 96
freeing 96
general definition 94
invoking methods 102
testing allocation 97
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unallocated 94
OMAR

design philosophy 2

differences from Java 6

files
resource files 12
source files 12
structure 12
types 12

format 11

similarities to Java 5

vocabulary 9

operatots

boolean 19

byte 22

complex 25

double 23

integer 22

long 22

precedence 31

relational 19

scalar 23

short 22

vector 26

optional parameters 54
keyword parameters D8
return parameters 60
or operator 19
ORES files 12
overriding methods 115
verses member shadowing 117

P

parallel component operator 26
parameters 51, 142
constants 64
final 65
kinds of parameters 52
mandatory 53
mandatory keyword 57
optional 54
optional keyword 58
optional return 60
reference 59
user-defined types as 63

perpendicular component operator 26
pictures
pointers 27
precedence of operators 31,142
primitive data types 18

and reference types 94
private

members 122

methods 125
procedure interface variables 65
procedure interfaces 91

procedures 12, 142
anims 14
multiple calls 69
pictures 14
questions 14,49
shaders 14
shapes 14
verbs 14, 48

program atguments 84

program header 12

pronouns 3

protected
members 120
methods 124

public
members 120
methods 124

Q

questions 14,49

R

read statements 83

real function 25

recursion 67

redim statement 82

reference methods 128

reference parameters 59

reference types vs. primitive types 94
reference variables 27

refers to operator 27, 29

relational operators 19
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renew statements 106
reserved words 9
resource files 12

difference from source files 12

return parameters 60
return statements 45
reuse of code 109
robustness of code 109
round function 22

S

safety 2

scalar 143
data type 23
math functions 24
operators 23

scoping 47
modifiers 62

shaders 14

shadowing
of a variable 116

shapes 14

shared objects 96

shott
data type 21
math functions 22
operators 22

short-circuit expressions 32

sin function 24

smart atrays 74

SMPL 2, 143

some keyword 98

source files 12
structure 12

sqr function 24

sqrt function 24

statements 15
answer statements 49
assignment statements 29
break statements 43
case statements 37
conditional statements 34
continue statements 43
dim statements 73

exit statements 45
for statements 40
if statements 34
looping statements 39
new statements 95
read statements 83
redim statements 82
renew statements 106
return statements 45
when statements 37
while statements 40
with statements 92
write statements 84
static binding (forcing) 130
static initializers 136
static scoping modifier 63
static vatiables 65
strings 20,143
structures 91
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assigning 93
declaring 92
with statements 92
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subjects 100, 102
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T

tan function 24
this 104
threads 7
trigonometric functions 24
trunc function 22
type aliases 88
type casting 118
type keyword 87, 119
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classes 99
enumerated types 89
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byte 21
complex 24
double 23
integer 21

150 Index



long 21 variables 17, 143

scdar 23 final 65
short 21 procedure interface variables 65
vector 25 shadowing 62, 116
structures 91 static 65
subjects 100 vector 143
type aliases 88 accessing the components of 26
user-defined data type 25
as parameters 63 operators 26
verbs 14, 48
vocabulary of OMAR 9
U VRML 4

user-defined types

as parameters 63

classes 99 W

enumerated types 89 when statements 37
StIUCturCfS8971 when-else statement 39
sy ﬂTaXlAO 88 while statements 40

type aliases with statements 92

write statements 84

\%

var parameters 7

Index 151



152 Index



	Contents
	Introduction
	Reasons for OMAR
	The OMAR Design Philosophy
	Safety
	Architecture Independence
	Generality
	Expressiveness


	Comparing OMAR to Java
	Similarities to Java
	Object-Oriented Features
	Memory Management
	Smart Arrays
	Primitive Data Types

	Differences from Java
	OMAR Forward Declarations
	OMAR Implicit Object & Array Allocation
	OMAR Class Interfaces
	Reference or Var Parameters
	Global Variables
	No Threads or Exception Handling


	OMAR Elements & Structure
	OMAR Vocabulary
	Reserved Words
	Identifiers
	Special Symbols

	Case Sensitivity
	Free Format
	OMAR File Types
	OMAR Source File Structure
	The Program Header
	Declarations
	Data Declarations
	Type Declarations
	Procedure Declarations

	Statements
	The Include Directive
	Comments


	Variables & Data Types
	Variables
	Data Types
	Boolean
	Char
	Strings

	Byte, Short, Integer, & Long
	Scalar & Double
	Complex
	Extracting the Real & Imaginary Components

	Vector
	Accessing the Components of a Vector

	Constants
	Reference Variables

	OMAR Statements
	The Assignment Statement
	The Assignment Operators
	Expressions
	Compact Expressions
	Pronouns: its and itself
	Short-Circuit Expressions

	Conditional Statements
	If Statements
	The When Statement

	Looping Statements
	The While Statement
	The For Statement
	For-Loop Counter Protection
	The For-Each Statement
	The Break and Continue Statements

	The Return Statement
	The Exit Statement
	Some Example Programs

	Procedures
	The Concept of Scoping
	Verbs
	Questions
	Parameters
	The Problem with Global Variables
	The Procedure Interface: Parameters

	The Different Kinds of Parameters
	Question #1: Must the data be returned from the procedure?
	Question #2 : Are there appropriate default values for the parameter?
	Question #3: Is the parameter usually used in a context preceded by keywords?

	Mandatory Parameters
	Declaration of Mandatory Parameters
	Assignment of Mandatory Parameters

	Optional Parameters
	Declaration of Optional Parameters
	Assignment of Optional Parameters

	Mandatory Keyword Parameters
	Declaration of Mandatory Keyword Parameters
	Assignment of Mandatory Keyword Parameters

	Optional Keyword Parameters
	Declaration of optional keyword parameters
	Assignment of optional keyword parameters

	Reference Parameters
	Declaration of Reference Parameters
	Assignment of Reference Parameters

	Optional Return Parameters
	Declaration of Optional Return Parameters
	Assignment of Optional Return Parameters

	Scoping Modifiers
	User-Defined Types As Parameters
	Constants As Parameters
	Final Parameters & Variables
	Static Variables
	Procedure Interface Variables
	Recursion
	Multiple Procedure Calls

	Arrays
	Arrays as Reference Types
	Creating Arrays
	Accessing Array Elements
	Dynamic Arrays
	Smart Arrays: Min, Max and Num
	Assigning Arrays
	Array Expressions
	Assigning Arrays by Reference
	Multidimensional Arrays
	Min, Max, and Num with Multidimensional Arrays
	Arrays of Arrays
	Assigning Sub-Arrays
	Resizing Arrays
	The Redim Statement


	Input/Output
	Input: The Read Statement
	Output: The Write Statement
	Program Arguments

	User-Defined Types
	Basic Syntax of User-Defined Types
	Type Aliases
	Enumerated Types
	Structures
	Accessing a Structure's Fields
	The With Statement
	Assigning Structures

	Primitive Types and Reference Types
	Unallocated Objects
	Dynamically Creating Objects
	Creating Multiple References to an Object
	Freeing Objects
	Testing Object Allocation

	Introduction to Object-Oriented Programming
	Class Components: Methods & Members
	Class Declarations: Interface & Implementation
	Class Instances: Objects
	Invoking an Object's Methods
	Accessing an Object's Members
	No this Parameter

	Constructors
	Destructors

	Intermediate Object-Oriented Programming
	Code Reuse and Robustness
	Inheritance
	Extending a Class
	Constructor Chaining
	Overriding Methods
	Dynamic Binding
	Variable Shadowing
	Method Overriding Vs. Member Shadowing
	Type Casting
	Type Querying
	Encapsulation
	Public & Protected Members
	Private Members
	Public & Protected Methods
	Private Methods
	Summary of Access Levels

	Advanced Object-Oriented Programming
	Objective Methods
	Reference Methods
	Disabling Dynamic Binding
	Final Methods
	Final Classes
	Abstract Methods
	Abstract Classes
	Interfaces
	Using Constants in Interfaces
	Static Initializers

	Glossary
	Index

