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CHAPTER 1
Introduction

The Hypercosm 3D Graphics System is a complete modeling, rendering, and
animation system that lets you create sophisticated three-dimensional graphics
with an unlimited range of behaviors. The power and flexibility of Hypercosm
are made possible through the use of the OMAR programming language and
its graphics extensions.

‘This manual provides an overview of OMAR’s graphics extensions and describes
how they can be used to create compelling 3D images and animations. This is
neither an introduction nor a complete guide to the OMAR programming
language. Such information is provided in our other available manual: The
OMAR Programming Langnage Reference Manual and Programming Guide. While this
manual can get you started in creating Hypercosm graphics, you cannot make
full use of Hypercosm’s capabilities without first gaining the basic understanding
of OMAR that our other manual provides.

The 3D Graphics Process

The Hypercosm system is, in the simplest of terms, a means of producing three-
dimensional graphics with a computer. Of course, images presented on a two-
dimensional computer monitor can only ever truly be two-dimensional. To a
computer, the difference between a typical 2D image and a so-called ‘3D’ image
is not so much in how an image appears as in how an image is defined.

A 2D image definition only contains information about a particular image: what
colors appear where on a two-dimensional grid. 3D graphics, on the other hand,
are derived from information about a complete three-dimensional scene. The
difference is analogous to the difference between a painting and a photograph.
Both appear on a two-dimensional surface, but a painting is created by drawing




directly to a 2D surface while a photograph is created by projecting a 3D scene
onto a 2D surface.

The 3D graphics process is in fact very similar to photography. To produce a
photograph, you must first select a subject to shoot, then decide how and where
the photo should be taken, and then press a button and let the camera do the
work of setting the scene to film. To produce 3D graphics, you must first define
a 3D scene, then choose how the scene will be viewed, and then let the computer
do the work of displaying the scene on a 2D computer screen. As in photog-
raphy, no drawing ability is required. You need only define what appears in the
scene—the shapes, the lights, etc.—and the computer figures out how to draw
the scene by itself.

When you use the Hypercosm 3D Graphics System, you use the OMAR
programming language to define 3D scenes and tell the computer how they
should be viewed, then the Hypercosm system takes care of drawing the scenes
for you.

How It All Works

To create 3D graphics with the Hypercosm system, you need to write programs
in OMAR, then run them with a Hypercosm interpreter. This process is made
very easy by Hypercosm’s development kits, either Hypercosm Sojourner or
Hypercosm Studio, which both have a built-in interpreter.

Interpreted programming languages, such as OMAR and Java, are generally similar
to conventional programming languages, such as C, Pascal, and FORTRAN,
but differ in their implementation. In order to run programs on a computer,
all programming languages must somehow be converted, ot compiled, into machine
langnage—the 1’s and O0’s that computers actually understand. C, Pascal, and
FORTRAN programs are all compiled directly into machine language executable
code that runs by itself (see Figure 1-1). Because the resulting executable file is
wiitten in one particular machine language, it cannot be run on all kinds of
computers, but only on computers that understand that particular machine
language.

2

Introduction



Figure 1-1: Creating and Running a Program with a Conventional Compiler
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When you use OMAR or Java, however, your code is first compiled into a

generic intermediate code that is not specific to any particular type of machine.
In order to run this intermediate code on your computer, it must be run through
a special program called an zuterpreter, which translates the generic intermediate
code into machine language instructions that can be executed on your particular
computer, no matter what machine language your computer understands (see

Figure 1-2).

How It All Works 3



Figure 1-2: Creating and Running a Program with an Interpreter
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It may at first seem like a drawback that your OMAR graphics code cannot run
without the Hypercosm graphics interpreter. There are several important benefits
to this approach, however.

Using the conventional approach, you must compile your program into an
executable format that is particular to each kind of computer that you would
like to run the program on. If you have ten programs that you would like to
run on five different kinds of computers, then you would need to make a total
of fifty different executables. Using the interpreter as a universal translator,
however, you would only need the ten programs that have been compiled into
the intermediate code and then the five different interpreters for each of the
computer types that you intend to run the programs on.

As the recent explosion in Java’s populatity shows, interpreted languages are

extraordinarily useful in web development. Once you've created a Hypercosm
graphics applet, you can put that single applet on your web page and be assured
that it will run on any machine that can view the web page, provided that that
machine has a Hypercosm interpreter. Currently, the Hypercosm interpreter is
available to all web users in the Hypercosm 3D Player, which you can download

from the Hypercosm web site (http://www.hypercosm.com) for free.

One valid criticism that can be made of interpreted languages is that interpreting
code is always slower than running machine code directly, which could be a
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problem for computationally-intensive graphics applications. In our case,
however, this is a negligible difference because almost all graphics applications
spend at least 95% of their time in redrawing the graphics and usually less
than 5% of their time actually animating objects. Since all the code to compute
the graphics is already compiled and optimized internally, this means that your
animations would only be around 5% faster if they were completely compiled
as they would be if you were writing them in C, Pascal, or Fortran.

Hypercosm Features

The Hypercosm 3D Graphics System has many features that distinguish it from
other commonly used 3D graphics systems, including the following:

* The OMAR programming language

Hypercosm’s graphics are created using the OMAR (Object-oriented
Modeling And Rendering) programming language. Designed as a general-
purpose language like Java or C++, OMAR improves on both as a 3D
graphics tool. It’s generally simpler and more readable, and it has many
built-in extensions designed specifically for 3D development. OMAR is also
ideally suited for web development because, like Java, it is an interpreted
language, resulting in platform independence and remarkably small file sizes.

* Hierarchical geometry
Using OMAR, you can group surface primitives together and manipulate
them as a single object. Since the hierarchy data is also used by the renderer,
databases with millions or even billions of primitives can be rendered on
modest machines.

* Multiple rendering modes
Hypercosm provides a variety of rendering modes, from simple wireframe
to full ray tracing. Included are two line rendering modes that find silhouette
edges and produce clean, simple images instead of the cluttered wireframe
meshes that are usually used.

* A choice of projections
Several different types of camera lenses are available for special wide angle
effects that cannot be achieved with standard projections.

* Real-time/interactive shadows, teflections and transparency
You can produce approximate soft shadows, reflections and transparency/
refraction effects at interactive rates.

* Extensibility
OMAR files can importt shapes, utilities, etc., from other files.

Hypercosm Features 5
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Sources for Additional Information

Using some of the advanced features of the OMAR programming language
requires at least a cursory understanding of programming fundamentals, and of

computer graphics. The Hypercosm documentation could never hope to cover

in detail all that you need to know to write good, clean programs and compelling

graphic images. However, there ate a number of good reference books available

if you are interested in reading mote about graphics programming. Here is a

small list of some that we like:

» Computer Graphics: Principles and Practice, Second Edition

James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes
Addison-Wesley Publishing Company

For most graphics issues, this may be the only book that you really need
as it has good, but not overly detailed, coverage of just about everything.

Procedural Elements For Computer Graphics
David F. Rogers
McGraw-Hill Book Company

This is an older and much less extensive book than the one above. Although
it focuses mainly on rendering technology, it still has a good coverage of
most important graphics topics.

Fundamentals of Three-Dimensional Computer Graphics
Alan Watt
Addison Wesley Publishing Company

This is a good overview of many topics in computer graphics but at a less
detailed and mathematical level than othets.

In addition, until a complete tutorial for the OMAR programming language is
created, users with no programming experience could look into any number of
introductory books or courses for other object-oriented languages such as Java
or possibly C++.

6

Introduction



CHAPTER 2
Getting Started

This chapter outlines some of the fundamentals of using the Hypercosm system,
including a few guidelines for OMAR file organization. For a more complete
guide to OMAR programming principles, consult The OMAR Programming
Langunage Reference Manual and Programming Guide.

What You Need

To create your own graphics with the Hypercosm system, you must write your
own OMAR files. Hypercosm Sojourner and Hypercosm Studio are two
Hypercosm products designed specifically for OMAR file creation. You’ll need
one of these products before making and running new OMAR files.

Hypercosm Sojourner is Hypercosm’s basic OMAR development kit, designed
to demonstrate the power and ease-of-use of the Hypercosm 3D programming
environment and the OMAR programming language. Sojourner has the built-in
capability to interpret your OMAR code and run the program you’ve created.
Hypercosm Sojourner is free and can be downloaded from the Hypercosm web

site at http://www.hypercosm.com.

Files that you create with Hypercosm Sojourner can be exchanged with other
Sojourner users. If, however, you want to create Hypercosm graphics for use
in web development, you should purchase Hypercosm Studio. Like Sojourner,
Studio lets you create and run your OMAR programs. However, unlike
Sojourner, Studio lets you compile your OMAR programs into applets that can
be uploaded to your web site.




OMAR Files

OMAR files, composed of OMAR programming code, contain all of the defini-
tions, instructions, and data that are needed to create 3D graphics with the
Hypercosm system. There are two different OMAR file types:

OMAR soutrce files are runnable files that contain essential instructions
for producing OMAR applets. Source file names should carry the extension
.omatr.

OMAR tesoutce files are not runnable, but contain ‘pieces’ of OMAR
code that may be imported for use in source files. Resource file names
carry the extension .ores.

Hypercosm’s Standard Resource Files

When you install Hypercosm Sojourner or Hypercosm Studio, you also receive
Hypercosm’s standard library of resource files (found in a directory titled Ores.)
Many of the provided resources are essential for the creation of even the most

basic graphics, and thus making changes to them is generally discouraged.

However, all of the resource files contain readable OMAR code, and perusing

them is a good way to find out about the vatious resources Hypercosm has to

offer. There are many useful features available in the resource files that are not

fully covered in this manual, including the following:

Shaders—Shaders are a sophisticated way of controlling the exact charac-
teristics of objects’ surfaces. Hypercosm provides shaders that can produce
transparent, cloudy, wooden, or bumpy surfaces, to name just a few.

Program argument handler—The args type, defined in args.ores, is
Hypercosm’s standard program argument handler. Including an args check
in your code allows you to set a variety of attributes—including window
dimensions, camera orientation, rendering modes, and background color—
in command line arguments or in HIML code. In Hypercosm Studio, args
check is run automatically at the beginning of every program, so if you'’re using
Studio, you may want to examine args.ores to find out more about what
can be controlled with program arguments.

Sounds—Hypercosm’s sound type is defined in native_sounds.ores. The
sound type can be used to import .wav files and play them in your OMAR
programs.

Mouse cursor setting—With the set_cursor procedure in
native_display.otes, you can change the mouse cursor style to any of
several common standard cursor types.

Web utilities—Procedures in native_links.otes allow you to set the url
and the status line in web browsers.

Collision detection and closest-point detection—DBuilt-in procedures
defined in native_collision.ores can tell you whether two shapes are inter-
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secting, whether a ray intersects a shape, or what part of a shape is closest
to a point or plane.

* Actors—Actors allow you to describe high level behavior of an object
and let the animation system control the details of moving the object for
each frame of an animation.

* Advanced shapes—In addition to the primitive shapes described in this
manual, Hypercosm provides code that defines hulls, extrusions, lathes,
lattices, pipes, pyramids, point clouds, and several other useful shapes.

O
0]
=
>
(o]
(%)
~
Y
=3
[
o

* Random, noise, and turbulence functions—The functions in
random.ores, native_noise.ores, and turtbulence.ores are a great way
to add variety to an image or make an object’s behavior more realistic.

There are a few special files, such as native_math.ores and native_model.ores,
that contain native declarations. These declarations describe features that are
built into the Hypercosm system and are therefore not written out completely
in OMAR code. Since these files provide descriptions of all the native features
that you can access, they can be a useful reference guide. You can actually
change the default values for these features by modifying their declarations, but
you should never change a native declaration in any other way. A native decla-
ration must perfectly match the interpreter’s precompiled code or else the run-
time system may behave erratically.

Hypercosm’s Sample Source Files

Hypercosm also provides numerous sample OMAR source files located in a
directory titled Omar. These files have been created to demonstrate
Hypercosm’s many capabilities, and range in complexity from very simple to
very sophisticated. Running through the example files is an excellent way to
learn how to write OMAR files, especially if you already have some programming
background. You can copy and paste lines of code from the sample files to
your own files to experiment with different behaviors or make modifications to
the code to learn how different changes affect appearance and behavior.

OMAR'’s Graphics Extensions

Using OMAR for graphics development would not be possible without some
way of expressing graphical information in the language. For this reason,
Hypercosm has added four fundamental graphics procedures to OMAR. They
are syntactically identical to other OMAR procedures but have been given
different names to reflect the different jobs they do.

OMAR'’s Graphics Extensions 9



Figure 2-1: Fundamental Graphics Extensions to OMAR

Procedure Action

shape Creates a shape
picture Draws a picture

anim Animates a sequence of pictures
shader Returns color values for shading objects

The shape, picture, and anim procedutes ate like verb procedutes because they
catry out actions but do not return any values. The shader procedure is like a
question procedure because it returns a value. Shaders are a feature beyond the
scope of this manual’s coverage. The other graphics procedures will be covered
in greater detail in later sections.

3D Coordinates

Although it is not necessary to know any algebra or trigonometry to use the
Hypercosm system, it is necessary to be comfortable with the three dimensional
coordinate system that is used to describe the geometry of the forms you wish
to create.

While Hypercosm graphics do appear on a 2D computer screen, it’s important
to remember that the Hypercosm wortld is truly three-dimensional. The
computer screen in the Hypercosm world is not so much a canvas on which
images are drawn as it is a camera’s view into a vast open space. Objects in
that space can be moved up or down, left or right, forward or backwards, and
how such changes appear on screen depends completely upon how the camera
is positioned. Objects appear large on the screen if the camera is placed relatively
close to them, and objects appear to be very small if the camera is relatively
far away. Any objects outside the camera’s field of view won’t appear on the
screen at all.

In order to describe various shapes and positions in the ‘vast Hypercosm space,’
we need some means of specifying locations in it. To do this, Hypercosm uses
the standard mathematical 3D coordinate system. The system works by setting
a single point in space as the origin. Three orthogonal (perpendicular) axes—X,
Y, and Z—run through the origin and can be used to measure distance from
the origin. All other points in space can then be specified by their X, Y, and
Z coordinates. The origin itself has the coordinates <0 0 0>, because it lies at
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the center of each of the axes. Other points may have positive or negative
coordinates depending on where they’re positioned with respect to the axes.

Figure 2-2: Coordinate Systems
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Here’s an illustration of using 3D coordinates to specify a location: If all the
streets in your neighborthood were orthogonal, you could tell someone how to
get to your apartment by telling them to go 3 blocks east, 5 blocks north, and
up 2 floors. This would put your apartment coordinates at <3 5 2> (assuming
you gave the directions at the origin). Note that the order of the coordinates
is important, because if the person went 2 blocks east, 5 blocks north, and 3
stories up, they would end up in a different location.

Using the Hypercosm system, you may generally assume that the origin will
appear at about the center of your screen; the X-axis will run from left to right
(right being the positive direction); the Y-axis will run from you into the screen
(forward being the positive direction); and the Z-axis will run up and down (up
being the positive direction). However, remember that how directions appear
on screen depends on where the ‘camera’ is placed. If, for example, the camera
is placed somewhere up the Z-axis and is pointed towards the origin, then the
Y-axis could run up and down.

3D Coordinates 11
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A Note About Units

You might be wondering exactly what size the units are in the 3D coordinate
system. If you place an object one unit away from the origin, how far will that
be on-screen? If you want to place a sphere 3/4 of the way across the graphics
window, how many units should you move it?

Units in the Hypercosm world are in fact completely relative, and how they
appear on screen depends completely upon camera placement and perspective.
Just as in real life, a unit that is close appears larger than a unit that is far away.
You can imagine the standard unit to be any length you choose—a millimeter,
a yard, or a light year—but how big a unit appears on screen still depends on
how close it is to the ‘camera’

Camera placement is determined in OMAR code by the variable called eye. As
a default, the eye is placed at the coordinates <10 -30 20> and is pointed
towards the origin. If you create a shape at the origin using default viewing
parameters, the shape should probably be between one and thirty units in width
in order to fit in the graphics window and not be too small. However, changing
any of the viewing parameters (as discussed in Chapter 4: [Zewing) or moving
the shapes you create can change how big a single unit appears.

In the end, the best method of handling 3D units is to follow, once again, the
practice of photography. When you want to determine how a scene will look
in a photograph, you don’t calculate beforehand what objects will appear where
in the photo. Instead, you simply look in the camera’s view finder, and if you
don’t like what you see, you can move items in the scene, move the camera,
zoom in or out, focus, etc. Similarly, when you want to know how a Hypercosm
3D scene will look on-screen, you simply run the program. 1f you don’t like what
you see, you can move the ‘virtual camera,” zoom in or out, or change the
shapes in the scene.

The Basic OMAR Graphics File

To create even the most basic OMAR graphics source file, you must at least
include the following:

Header Statement

At the beginning of every OMAR source file, you must write a beader statement
that tells the computer which procedure to run first. A header statement is
composed of the keyword do, followed by a procedure name, and ends with a
semicolon, like this: do example;. In a graphics source file, the procedure named
is either a picture or anim. Running a picture produces a still image. Running an
anim produces an animation, which is essentially a seties of pictures being contin-
uously redrawn.

12 Getting Started



Note: the major difference between source files and resource files is that a
resoutrce file does not contain a header statement, and therefore cannot be
compiled and run by itself.

Include Statements

An include statement is used to import OMAR code from other OMAR files.
Producing even the most basic of graphics requires that OMAR code is
imported from some of Hypercosm’s standard resource files. All of the
essential graphics resource files can be included by including the single file
3d.ores. Therefore, almost all OMAR graphics files should contain the
statement include "3d.ores"; after the header statement. Other include state-
ments may be used to include any of Hypercosm’s OMAR files or any of
your own, whether they are regular source files or resource files.

O
0]
=
>
(o]
(%)
~
Y
=3
[
o

Declarations
At a bare minimum, an OMAR graphics file requires a picture declaration.
Running a picture is the only way to display something on the screen using the
Hypercosm system. Even if the header statement runs an anim, the anim must
in turn run a picture in order to produce any image. Inside a picture are shape
statements that indicate what objects are to appear in the image. Hypercosm
can only display a shape if it is called inside a picture declaration.

Figure 2-3: Basic Picture Declaration

picture <name> is
<shapes>

end;

If an OMAR soutce file is to run an animation, it must contain an anim decla-
ration as well. For more discussion about how sophisticated animations can be
written, see Chapter 6: Animation.

A Simple Example

The file below contains the bare minimum requirements to produce graphics.
It simply draws a shaded sphere. Text that appears after a pair of slashes // is
considered a comment and is ignored by the computer.

Listing 2-1: A Simple Picture

do sphere_picture; // The header statement: instructs the computer to run ‘sphere_picture.’
include "3d.ores"; // An include statement: imports OMAR code from ‘3d.ores.’
picture sphere_picture is  // A picture declaration: specifies what appears in the picture.
distant_light; // Calls for a distant light to be cast on objects in the picture.
sphere; // Calls for a sphere to be drawn in the picture.
end;

The Basic OMAR Graphics File 13



A More Interesting Example

Only a little more code is needed to produce much more interesting graphics.
The following example file creates an interactive animation that allows you to
spin a cube around, zoom in and out, and pan the camera around by pressing
mouse buttons and dragging. More information about how this works is given
in Chapter 6: Animation.

Listing 2-2: An Interactive Cube

do cube_anim;

include "3d.ores"; _ _ _
include "anims.ores"; // ‘anims.ores’ is needed to use ‘mouse_controlled_picture.’

picture cube_picture is
distant_light from <-1-2 3>;
block;

end;

anim cube_anim is
mouse_controlled_picture cube_picture; //‘mouse_controlled_picture” is a special procedure
/[ that takes a picture and makes it an interactive
// animation.
end;

14 Getting Started



CHAPTER 3

Modeling

In computer graphics, the term modeling refers to the process of defining, or
building all of the shapes in a scene. Once you have defined a scene, it may be
turned into a picture through the process of rendering, which is covered in
Chapter 5: Rendering.

Objects in the real world are composed of many different shapes and surface
types, and it is challenging to try to model such variety on the computer. Some
shapes are surprisingly easy to represent with a computer, while some are
remarkably difficult. A molecule, for example, may be modeled as a group of
spheres. This is easy to do on a computer because a sphere is a basic geometric
shape and is therefore easily defined. Something like a person, however, is a
much more difficult shape to model because people come in all sorts of shapes
with lots of slightly differing curves. Computer graphics is still not capable of
realistically modeling many shapes, such as clouds, fire, or hair. However, while
challenging, it’s usually possible to figure out an adequate way of modeling most
objects with basic easily-modeled shapes.

Elements of Modeling

The three basic components of modeling that this chapter covers are:

* Geometry. The precise size, shape, and location of each shape in a scene
must all be specified.

* Lighting. The lighting of a scene determines how bright objects appear
and how they are shaded. You must define where light is coming from,
how bright it is and what color it is.

* Surface Attributes. In a lighted, three-dimensional scene, the color of an
object varies across its surface. How the color varies depends on the
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material the object is made of. Metal, plastic, and paper all reflect light
differently. Thus, modeling also involves specifying an object’s material or
texture.

Primitive Shapes

The first important aspect of modeling is defining a scene’s geometry. All the
shapes you create, no matter how complex, must be built up from basic
geometric shapes that the computer knows how to draw. These basic shapes
are known as primitive shapes.

The primitive shapes are divided into four groups:
* Quadrics
* Planar primitives
* Non-planar primitives
* Non-surface primitives

In the Hypetcosm system, lights are also considered to be a special class of
primitive shapes, but will be discussed later.

Quadrics

There are six different types of quadrics:
* Sphere
* Cylinder
* Cone
¢ Paraboloid
* Hyperboloidl
* Hyperboloid2

These quadrics ate all surfaces of revolution. Their surfaces are defined by the
types of curves known as conic sections. The sphete, cylinder, and cone shapes
should be very familiar to you.

The hyperboloid] is the shape of a cooling tower of a nuclear reactor and is
also roughly the shape of the bell of a musical instrument such as a trumpet.
The paraboloid and hyperboloid2 atre gumdrop-shaped surfaces that you can
use to model such things as domes or satellite dishes.

Planar Primitives

There are six different types of planar primitives:
* Plane
¢ Disk
* Ring
* Triangle
* Parallelogram
* Polygon

16
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As their name implies, these primitives are all flat, as though cut out of an
infinitely thin sheet of paper. The plane is most useful for representing the
ground (computer graphics people believe in a flat earth). In the raytracing
render mode, the plane is rendered as an infinite plane. In the other rendering
modes, the plane is represented by a finite planar grid.

The disk and ring are very useful for capping the ends of quadric primitives
like the cylinder or cone to make them look solid. The triangle, parallelogram,
and polygon are all useful when constructing shapes with a lot of flat faces,

A A A . <
so they are commonly used in architectural and mechanical design. S
o
Non-Planar Primitives &
There are six different types of non-planar primitives:
* Torus
* Block

* Shaded triangle
* Shaded polygon
* Mesh
* Blob

The torus is a doughnut shape. The block is a simple block. The shaded_triangle
and shaded_polygon are like tiny pieces of a curved sutface. If you put a large
number of them together, with their curvature matching at the edges, they can
be used to approximate curved shapes. The mesh is an efficient way of repre-
senting any general shape or surface as a collection of tiny facets. Shapes with
unusual curved surfaces such as automobiles, aircraft, or human figures are often
represented this way. The blob can be used to model such shapes as water
droplets, molecules, and organic shapes that flow together and would be hard
to construct otherwise.

Non-Surface Primitives
There are three different types of non-surface primitives, points, lines, and a
volume primitive. The points and lines ate called non-surface primitives because
they are infinitely tiny and therefore do not define a surface. Since they are
infinitely tiny, points are represented on the computer screen as individual pixels,
and lines are represented as contiguous, one-pixel-wide groups of pixels. The
volume primitive does not have an explicitly defined surface but is instead

specified as a density field.
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Using the Primitives

The following pages illustrate the declarations of all the geometric primitives as
they appear in the file, native_model.ores. Shapes are actually called in picture
declarations or in other shape declarations. To reset a shape’s parameters, you
must use the keyword with when you call the shape. To learn mote about the
syntax of procedure calls, consult The OMAR Programming Language Reference
Manual and Programming Guide.

Example: Using Primitive Shapes

picture example is
sphere; // This sphere uses the sphere’s default parameters

cone with // This cone uses default parameters, except for the parameters reset below.
endl = <-200>;
end2 = <200>;
umax = 180;
end;
end;
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Quadric Primitives

Figure 3-1: The Sphere

shape sphere with
vector center = <0 0 0>;
scalar radius = 1;

// Sweep parameters

scalar umin = 0;

scalar umax = 360;

scalar vmin = -90;

scalar vmax = 90;
end;

Suijepow

Figure 3-2: The Cylinder

shape cylinder with
vector endl = <00 1>;
vector end2 = <00 -1>;
scalar radius = 1;

// Sweep parameters

scalar umin = 0;

scalar umax = 360;
end;

Figure 3-3: The Cone

shape cone with
vector endl = <00 1>;
vector end2 = <0 0 -1>;
scalar radius1 = 0;
scalar radius2 = 1;

// Sweep parameters

scalar umin = 0;

scalar umax = 360;
end;
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Quadric Primitives

Figure 3-4: The Paraboloid

shape paraboloid with
vector top = <0 0 1>;
vector base = <00 -1>
scalar radius = 1;

/[ Sweep parameters

scalar umin = 0;

scalar umax = 360;
end;

Figure 3-5: The Hyperboloid1

shape hyperboloid1 with
vector endl = <00 1>;
vector end2 = <00 -1>;
scalar radiusl = .5;
scalar radius2 = 1;

/[ Sweep parameters

scalar umin = 0;

scalar umax = 360;
end;

Figure 3-6: The Hyperboloid2

shape hyperboloid2 with
vector top = <0 0 1>;
vector base = <0 0 -1>;
scalar radius = 1;
scalar eccentricity = .5;

/| Sweep parameters

scalar umin = 0;

scalar umax = 360;
end;
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Planar Primitives

Figure 3-7: The Plane

shape plane with
vector origin = <00 0>;
vector normal = <0 0 1>;
end;

Suijepow

Figure 3-8: The Disk

shape disk with
vector center = <0 0 0>;
vector normal = <0 0 1>;
scalar radius = 1;

// Sweep parameters

scalar umin = 0;

scalar umax = 360;
end;

Figure 3-9: The Ring

shape ring with
vector center = <0 0 0>;
vector normal = <0 0 1>;
scalar inner_radius = .5;
scalar outer_radius = 1;

// Sweep parameters

scalar umin = 0;

scalar umax = 360;
end;
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Planar Primitives

Figure 3-10: The Triangle

shape triangle
vector vertex!;
vector vertex?2;
vector vertex3; 7
end;
WE R -
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Figure 3-11: The Parallelogram

shape parallelogram with
vector vertex =<-1-10>;
vector sidel = <2 00>;
vector side2 = <0 2 0>;
end;

S"’DE?

Figure 3-12: The Polygon

shape polygon

vector vertices[];
with

vector texture[];
end;
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Figure 3-13: The Torus

shape torus with
vector center = <0 0 0>;
vector normal = <0 0 1>;
scalar inner_radius = .5;
scalar outer_radius = 1;

// Sweep parameters

scalar umin = 0;

scalar umax = 360;

scalar vmin = 0;

scalar vmax = 360;
end;

Figure 3-14: The Block

shape block with
vector vertex=<-1-1-1>;
vector sidel =<2 00>;
vector side2 = <02 0>;
vector side3 = <00 2>;
end;

Non-Planar Primitives

Figure 3-15: The Shaded_Triangle

shape shaded_triangle
vector vertex1;
vector vertex2;
vector vertex3;

vector normall;

vector normal2;

vector normal3;
end;

Primitive Shapes
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Non-Planar Primitives

Figure 3-16: The Shaded Polygon

shape shaded_polygon
vector vertices(];
vector normals|];

with
vector textures(];
end;

Figure 3-17: The Mesh

shape mesh
vector vertices|];
integer edges|, |;
integer faces[];
with
vector normals[];
vector textures|];
boolean smoothing is true;
boolean mending is false;
boolean closed is false;
end;

Figure 3-18: The Blob

shape blob

vector centers[];
with

scalar radii[];

scalar strengths[];

scalar threshold = .5;
end;
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Non-Surface Primitives

Figure 3-19: Points

shape points
vector vertices[];
end;

Figure 3-20: Line

shape line
vector vertices[];
end;

Figure 3-21: Volume

shape volume
scalar densities[,,];
in form of vector vertices],,]
is none;
with
vector vertex[,,];
scalar threshold = .5;
boolean capping is true;
y boolean smoothing is true;
end;

Primitive Shapes
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A Closer Look at the Primitives

Some aspects of the primitives are complicated and require further explanation.

Sweeps or Partial Surfaces

Primitives that are derived from circles can be cut along longitude lines and
sometimes along latitude lines. This tesults in a partial surface called a sweep.
The sutfaces that allow this operation are the quadrics, the disk and ring, and
the torus.

Longitude and Latitude
On a globe, the longitude lines are the lines that run from the north pole to
the south pole. The latitude lines are the ones that circle the globe parallel to
the equator. You can describe a sweep in terms of minimum and maximum
longitude and latitude.

The longitude restraints are the parameters umin and umax. Longitude is
measured in degrees and usually ranges between 0 and 360. Angles greater than
360 or less than 0 will wrap around automatically by adding or subtracting 360
degrees.

The latitude restraints are vmin and vmax. Latitude usually ranges from -90 to
90 with O degrees at the equator. Latitudinal angles that are out of range will
automatically wrap around by adding or subtracting 180 degrees. The longitude
and latitude are measured in the local coordinates of the primitive.

Figure 3-22: Longitude and [ atitude
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Figure 3-23: A Circular Wave Using Sweeps
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Listing 3-1: Using Sweeps of Torii to Create a Circular Wave

do circle_wave_picture;
include "3d.ores";

shape circle_wave with
integer steps = 4;
scalar radius = 1, ucut = 360;

scalar stepsize = radius / steps;

sphere with
radius = stepsize; umax = ucut;
vmin = 0; vmax = 90;

end;

for integeri=1.. (steps - 1) do
if even i then
torus with
inner_radius = i * stepsize; outer_radius = (i + 1) * stepsize;
umax = ucut; vmin = 0; vmax = 180;
end; // crests
else
torus with
inner_radius = i * stepsize; outer_radius = (i + 1) * stepsize;
umax = ucut; vmin = 180; vmax = 360;
end; // troughs
end;
end;
end; // circle_wave

picture circle_wave_picture with

o eye=<1-21>

is
sphere with center = <0 0 .5>; radius = .1, color = aqua; end; /[ big droplet
sphere with center = <0 0 .7>; radius = .025; color = aqua; end; // little droplet
circle_wave with steps = 10; ucut = 270; end;

end; // circle_wave_picture
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Measuring Longitude
Longitude is always measured as degrees of counterclockwise rotation around
the Z-axis, starting in the positive X direction. This means that if you want to
create a quarter-cylinder that sweeps from the positive X direction to the positive
Y direction, you should use a cylinder primitive and set its umin to 0 and its
umax to 90.

However, if a primitive is rotated so that its axis of rotation does not correspond
to the real Z-axis (see Figure 3-24) then the primitive’s longitude measurement
is determined by its /oca/ coordinates. The /foca/ Z-axis of a primitive is always
simply aligned with its axis of rotation. The local X-axis of a primitive is
computed by finding the vector that is closest to the real X direction and is
still perpendicular to the local Z-axis of the primitive. The local Y-axis of the
primitive is the direction that is perpendicular to the local Z-axis and the local
X-axis, which are both defined above.

Figure 3-24: [ocal Coordinates of a Surface of Rotation

The Mesh Primitive

A mesh is a group of polygonal facets that can be automatically shaded in a
way that makes it appear to be smoothly curved. The computer shades a typical
polygon by using the polygon’s normal—the direction perpendicular to the
polygon’s surface—to determine how much light is reflected off the polygon’s
surface. The normals of a mesh’s facets, however, are automatically adjusted in
such a way that when shading is done, the facets appear to be curved instead
of flat.

You specify a mesh by defining an array of vertices, an array of edges, and an
array of faces. The vertices are vectors. The edges are pairs of indices to the
vertices. The face array contains indices to edges. The index, 0, is used to indicate
the end of a face. The face array: [4 6 20 2 8 5 3 0] defines two faces because
there are two lists of integers delimited by zeros.
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You must specify the edges of a face in a consistent order, meaning that they
must all go clockwise, or all go counterclockwise. The positive direction of an
edge is defined by the order in which the vertices are given. To specify that

you want an edge that goes in the opposite direction, put a negative sign in

front of the index to the edge. For example, if you have the face [4 -3 21 0],
that means that edge 4 is followed by the reverse of edge 3, followed by edges
2 and 1. The format is illustrated by the following example:

Figure 3-25: Cube Vertices
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Figure 3-26: Cube Edges
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Figure 3-27: Cube Faces

Example: Using a Mesh

shape cube is
mesh
/[ vertices
[<-1-1-1><1-1-1><11-1><11-1>
<1-1D<1-1D><111><1115]

end; // cube

Figure 3-28: The Cube Mesh
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Figure 3-29: The Cube Mesh with Smoothing
M

The Shaded Triangle & Shaded Polygon
The shaded triangle and shaded polygon are like pieces of a mesh in that they
are flat shapes that can be shaded as if they were curved. The mesh, however,
knows which facets are adjacent to which other facets, so it can automatically

compute the normals to perform smooth shading. With the shaded polygon and
shaded triangle, however, you must specify the normals at the vertices yourself.
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The normals must all be specified to point in the same direction relative to the
plane of the polygon. If they don’t point in the same direction, very strange
shading effects occur.

Figure 3-30: Normals in the Same Direction
z
-
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Figure 3-31: Normals Not in the Same Direction

Remember that the mesh, shaded triangle, and shaded polygon are all means of
approximating curved surfaces. They will not yield great results if the number of
polygons used to approximate a surface is very low. If the shading looks strange,
you might need to use more polygons to approximate the curve.

The Volume Primitive

The volume primitive is useful for scientific visualization and for modeling
shapes that would be difficult to define explicitly in terms of their vertices, edges
and faces. A volume primitive contains information about a volume’s density
at regular points throughout the volume. What appears on-screen is the portion
of the volume that has density values greater than the volume’s threshold
parameter.

The volume primitive normally takes the shape of a unit cube. To make a
volume of some other rectangular shape, you can simply scale the cube along
its axes to attain the desired shape. For non-rectangular volumes, you have to
specify the shape of the volume by an optional array of vertices. For example,
if you want to visualize the humidity in the atmosphere of the earth, you would
have to warp the volume to a spherical region. If the densities are meant to
denote the temperature in an engine cylinder, you would warp the volume to
a cylinder. If you are interested in seeing an example of how this is done, you
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can look at Hypercosm’s example file, volume.omar, found in the Physics
directory.

Figure 3-32: Volume Warped to a Sphere
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Figure 3-33:

Lighting
In order to model a shaded scene, you must not only specify the geometry of

the scene, but the lighting conditions as well. Hypetcosm’s renderer then
computes how the light interacts with the geometry of the scene.

Lighting Primitives
Lights are treated in many respects as shapes. They may be scaled, moved, and
rotated just like ordinary shapes. Lights are different, however, because the lights
themselves can’t be seen. Only their influence on the scene around them gives
away their presence. It is as if you can make light appear spontaneously out of
empty space.

There are three types of lights: distant, point, and spot lights.
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* Distant lights are used most often because they’re easy to set and similar
to sunlight.

* Point lights are like a light bulb and only illuminate an area around
themselves.

* Spot lights emit cones of light that dim at the edges like flashlights or a
car’s headlights.

Lights may be any color (even negative colors—darkon emitters!) and there may
be any number of lights, although beware that many lights will cause the program
to render very slowly.

The definitions of the lighting primitives are illustrated in the following sections.
Their definitions can also be found in native_lights.ores.

Ambient Light

If you walk outside on a sunny day and look at the ‘dark side’ of an object
such as a building which is not receiving any light from the sun, you notice
that the surface is not completely dark, like the dark side of the moon. Why is
this? It’s true the surface receives no direct light from the sun, but it receives
indirect sunlight from all around—from the lit up sky and from light reflected
off of other objects.

Hypercosm approximates this kind of light by saying that an entire scene is
bathed in a constant uniform light coming from all directions. This is what is
known as ambient light.

Figure 3-34: The Ambient Light Variable & Default

vector ambient = <.4 .4 .4>;

The default ambient light is set at <.4 .4 4> (in native_render.ores). You
could give sunny outdoor scenes a more realistic appearance by setting the
ambient term to a slightly bluer color such as <.3 .3 .4> because blue sky emits
a diffuse bluish glow. If you’re modeling space pictures, then it is a good idea
to set the ambient term to something like <.1 .1 .1> or even <0 0 0> since
there is very little scattered light in space.
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Lighting Primitives

Figure 3-35: The Distant Light
shape distant_light

from vector direction
=<001>; b
with ISTANT L gt

scalar brightness = 1;

color type color = white;

boolean shadows is true;
end;
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Figure 3-36: The Point Light

shape point_light with
scalar brightness = 1;
color type color = white;
boolean shadows is true; POINT LigHy

end;

// Note: a point_light is by default
// located at the origin.

Figure 3-37: The Spot Light

shape spot_light
towards vector direction
=<001>;
with SPOT LiGHT
scalar brightness = 1;
scalar angle = 90;
color type color = white;
boolean shadows is true;
end;

// Note: a spot_light is by default
// located at the origin.
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The following example program draws a swinging spot light. It demonstrates
the usage of distant lighting, spot lighting, and ambient lighting.

Listing 3-2: A Swinging Spot Light

do spot_anim;
include “3d.ores”;

picture swinging_spot with
scalar time = 0;
eye = <0 -15 10>;
ambient = <.3.3 4>; // Ambient light is slightly bluish.

scalar s = cos(time * 5); // Swing light back and forth.
vector spot_location = <00 2>;
vector spot_direction = <s 0 -1>;

distant_light from <.3 -.5 1>with /[ overhead light
brightness = .5;

end;

spot_light towards spot_direction with // spot light inside of cone
move to spot_location; // use ‘move to’ to place spot light
brightness = 6;

end;

cone with // shade for spot light

end1 = spot_location - (normalize spot_direction) * .5;
end2 = spot_location + (normalize spot_direction) * .5;
radius1 = 0; radius2 = .5; color = yellow;

end;

plane with // floor
magnify by 5; color = white;

end;

end; /[ swinging_spot

anim spot_anim with
double_buffer is on;

is
scalars = 0;
while true do
rotate by 1 around <0 0 1>; // This rotates the entire scene.
swinging_spot with time = s; end;
s = itself + 1; // These numbers can be changed to adjust

// animation speed.
end;
end; // spot_anim

Hierarchical Modeling

You could conceivably build any shape that you wanted just by creating a long
list of primitives. However, a more practical and intuitive approach would be
to define simple shapes out of primitives and then combine these simple shapes
into more complex shapes. This is what is known as hierarchical modeling.
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A group of shapes, or an aggregate shape, can be treated just like a primitive shape.
It can be moved, rotated, magnified, or manipulated with any other operation
that you can perform on a primitive shape. Once an aggregate shape is defined,
it will not appear anywhere in a picture unless you specifically create an instance
of the shape in either a picture or another shape that appears in the picture.

This is known as Zustantiation. Aggregate shapes are declared as follows:

Figure 3-38: Aggregate (Hierarchical) Shape Declaration

shape <name> is
<shapes>
end;
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All aggregate shape definitions must have a name so they can be uniquely
identified. Sometimes the hardest thing about writing good OMAR description
files is thinking up good names for all the shapes that are described.

Figure 3-39: A Hierarchically Defined Snowman

Relative Transformations

Relative transformations include actions such as moving, rotating, magnifying,
stretehing, and scaling a shape. Once you define a shape, you can create several
instances of the shapes, all with different locations, orientations, and dimensions.
More than one transformation may be applied to a single instance. For example,
one shape may be rotated, then stretched, then moved. Note that the order of
the transformations is important. An object that has been stretched, then rotated
looks different from an object that has been rotated, then stretched.

Relative transformations specify the size or position of a shape relative to the
way that it was originally defined in its declaration. For instance, if a shape is
set to 2 units high in its declaration, you can make it 6 units high by magnifying
by 3. To make the shape 6 units high regardless of how it was defined, you’d
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Listing 3-3: Description of a Snowman Using Hierarchy

do mr_snow;
include "3d.ores";

shape snowman is
// Body:
color = white;
sphere with center =<0 0 1>; end;
sphere with center = <0 0 2.4>; radius = .6; end;
sphere with center = <0 0 3.2>; radius = .4; end;

// Nose:

cone with
color = orange;
endl = <0-.33.2>; end2 = <0-.83.2>;
radiusl = .1; radius2 = 0;

end;

// Eyes:

color = charcoal;

sphere with center = <-.2 -.2 3.4>; radius = .1; end;

sphere with center = <.2 -.2 3.4>; radius = .1; end;
end; // snowman

picture mr_snow with
eye = <3-84>;
_ lookat =<0 02>
is
snowman; /[ Here, instead of instantiating many primitive shapes,
// we need only instantiate ‘snowman.’
end; // mr_snow

need to use an absolute transformation, which is covered later. Relative trans-
formations are defined in transforms.ores.

Figure 3-40: Using Relative Transformations

<shape name> with .
<relative transformations>
end;
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Relative Transformations

Figure 3-41: The Move Transformation

verb move ‘
to vector location;
end;

Suijepow

Figure 3-42: The Magnify Transformation

verb magnify

by scalar s;

about vector point = <0 0 0>;
end;

Figure 3-43: The Rotate Transformation

verb rotate

by scalar angle;

around vector axis;

about vector point = <0 0 0>;
end;
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Relative Transformations

Figure 3-44: The Scale Transformation

verb scale

by scalar s;

along vector v;

about vector point = <0 0 0>;
end;

Figure 3-45: The Stretch Transformation

verb stretch

by scalar s;

along vector v;

about vector point = <0 0 0>;
end;

Figure 3-46: The Skew Transformation

verb skew

from vector point1;

to vector point2;

about vector point = <0 0 0>;
end;
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Relative Transformations

Figure 3-47: The Slant Transformation

verb slant

by scalar angle;

about vector point = <00 0>;
with

vector x_axis = <10 0>;

vector y_axis = <0 10>;
end;

SLANT
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Figure 3-48: The Direct Transformation

verb direct
from vector v1;
to vector v2; . DIRECT
about vector point = <0 0 0>;
end;

Figure 3-49: The Orient Transformation

verb orient
from vector v1;
to vector v2; . ORIENT
about vector point = <0 0 0>;
end;
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Figure 3-50: A Hierarchically Defined Snow Family

Listing 3-4: A Family of Snowmen Using Hierarchy and Transformations

do snow_family;

include "3d.ores";

shape snowman is

end;

// Body:

color = white;

sphere with center = <0 0 1>; end;

sphere with center = <0 0 2.4>; radius = .6; end;
sphere with center = <0 0 3.2>; radius = .4; end;

// Nose:

cone with
color = orange;
endl = <0-.33.2>; end2 = <0 -.8 3.2>;
radiusi = .1; radius2 = 0;

end;

/| Eyes:

color = charcoal;

sphere with center = <-.2 -.2 3.4>; radius = .1; end;

sphere with center = <.2 -.2 3.4>; radius = .1; end;
// snowman

picture snow_family with

eye = <3 -84>;

~ lookat = <002>;

is
snowman with move to <-.7 0 0>; end; // Dad
snowman with magnify by .8; move to <.7 0 0>; end; // Mom
snowman with magnify by .5; move to <-.5 -1 0>; end; /[ Kids
snowman with magnify by .5; rotate by 30 around <0 0 1>; move to <.5 -1 0>; end;

end; // snow_family
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The Transformation Stack

The previous examples showed how to use transformations to modify a
particular instance of an object relative to its local frame of coordinates. There
may be cases where you wish to do a more complicated series of transforma-
tions, such as a series of objects each of which is offset or rotated in relation
to the previous object, instead of in relation to the local coordinates. If you
understand the way the transformation stack wortks, you can do these types
of operations more easily.

The Current Transformation State

Each time you make a new shape, it is positioned relative to the current trans-
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formation. Each time you begin to define a new object or a new instance, a
new state is created and when you are finished, the state is returned to the
state that existed before.

You can think of this as a stack of transformation states with the current trans-
formation on top of the stack. When you begin a new object, you push a new
state onto the stack and when you are through defining that object, you pop

its state off the stack to return to the previous one.

Transforming a Series of Shapes

Usually, transformations are placed only within the scope created by a shape
instance (i.e. after the With keyword in an instantiation). In that case the trans-
formations affect only that particular instance of an shape. However, transfor-
mations can be applied anywhere in a list of shape instances. If you place a
transformation inside of a shape declaration, but outside of a single instance,
then all the instances that follow the transformation will be affected because
you have changed the state in which they are declared.

Example: Transforming a Series of Objects

shape thing is
<instances1>  // These shapes are unaffected by the transformations

<transformation1>
<instances2>  // These shapes are affected by transformation1
<transformation2>

<instances3>  // These shapes are affected by both transformations
end;

Nesting Transformations

Sometimes, you want to have the transformations work in a hierarchical manner,
with each transformation relative to the previous one. You can do this by nesting
transformations.
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For example, say you want to define a finger, with each joint bent by a certain
angle relative to the previous joint. Also, you want each successive joint to be
smaller. To accomplish this, the second joint is instantiated within the first joint,
after the first joint’s transformations, so it is moved and scaled relative to the
first joint.

Listing 3-5: Nested Transformations - The Finger

do finger_picture;

include "3d.ores";

shape joint with
_ scalar radius = .5, length = 1;
is

color = pink;

sphere;

color = flesh;

cone with end1 = <0 0 0>; end2 = <0 0 length>; radius1 = 1; radius2 = radius; end;
end; // joint

shape finger with
- scalar curl = 0, joint_radius = .9, joint_length = 2.3;
is
joint with /[First knuckle
radius = joint_radius; length = joint_length;
rotate by curl around <10 0>;

joint with //Second knuckle
radius = joint_radius; length = joint_length;
magnify by joint_radius; move to <0 0 joint_length>;
rotate by curl around <10 0>;

joint with //Third knuckle
radius = joint_radius; length = joint_length;
magnify by joint_radius; move to <0 0 joint_length>;
rotate by curl around <10 0>;

sphere with /[Fingertip

center = <0 0 joint_length>;

radius = joint_radius;

color = pink;
end;

end;
end;
end;

end; /[ finger

picture finger_picture is

distant_light from <1 -1 1>;

rotate by 90 around <0 0 1>;

finger with curl = 0, with curl =20, with curl = 40; end;
end; // finger_picture
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Absolute Transformations

The main difficulty with relative transformations is that sometimes you may
want to manipulate an object without having to look at the dimensions that it
was defined with.

For example, say that you include a model of a car in your picture and want
to set it onto a road. Assume that the road is one unit wide and you want
the car to fit nicely onto the road. If you were to use the relative transforma-
tions, you would need to examine the model of the car to see how big it is
and then magnify it by the (road width / car width). However, if you use the
absolute transformations, you can just specify that the car should be a certain
width, no matter how big or small the car was originally defined to be.
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Specifying Absolute Transformations

Absolute transformations are specified a little differently than relative trans-
formations. Since the absolute transformations need to know the dimensions
of the object in order to wotk, they must take place affer the object has been
created. The relative transformations are listed in a block of statements beginning
at the keyword with which is executed before the object is actually created by
the computer. The absolute transformations must occur after the object has
been built, so they are listed in a later block of statements beginning with the
keywords return with.

Figure 3-51: Specifving Absolute Transformations

<object name> with

<relative transformations (optional)>
return with

<absolute transformations>
end;

Mixing Relative and Absolute Transformations

It 1s also possible to mix relative transformations and absolute transformations
by listing them both in the same block after the return keyword. For example,
you may want to scale the size of the model car to fit onto the road using an
absolute transformation and then follow this with a rotation which is a relative
transformation to make the car appear to be turning off the road.

Implementation of Absolute Transformations

The absolute transformations are implemented by having the program return
the size of the object through the state variables, origin, x_axis, y_axis, and
Z_axis.

The size of the object is actually reported as a bounding box, which may be
slightly bigger than the actual object because a box must have extra room inside
to encompass a non-square object. Therefore, if you specify the dimensions of
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an object using an absolute transformation, the object is always guaranteed to
lie inside of the dimensions, but may be slightly smaller than the bounds that
you specify. If the object fits nicely inside of a box, then the absolute transfor-
mations will more closely reflect the actual dimensions of the object itself.

Absolute transformations are defined in the file abs_trans.ores.
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Absolute Transformations

Figure 3-52: The Dimensions Transformation

verb dimensions
of vector v;
about vector point
=<000>;
end;

{ﬁli?ensgonsbresizes afsréage tﬁ fill
the bounding box specified by the
coordinates in v.} DAMENS 1o
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Figure 3-53: The Size Transformation

verb size
of scalar s;
enum axis is x_axis, y_axis,
Z_axis;
along axis type axis;
about vector point
=<000>;
end;
S\ZE
{size resizes a shape, preserving
relative proportions, to fit in a
bounding box with length s
along axis. }

Figure 3-54: The Limit Transformation

verb limit
enum limit is x_min, x_max,
y_min, y_max,
Z_min, z_max;
limit type limit;
to scalar s;
end;

{limit moves a shape, preserving its LMy
size, to the limit set by s.}
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Color

Because of certain characteristics of the human eye, almost all imaginable colors
can be created by mixing red, green, and blue in vatious proportions. While
computer monitors may appear to display a full spectrum of colors, they actually
use only three: red, green, and blue.

In the Hypetcosm system, all colors are specified using RGB values, which
indicate exact amounts of red, green, and blue in ranges from 0 to 1.

Assigning Color to Shapes

To assign a color to a shape, you must use the global color variable (which is
declared in native_render.otes).

Figure 3-55: The Global Color Variable

color type color;

The global color variable is both called color and is of the color type. The color
type works the same as the vector type because colors, like vectors, are specified
by three numbers. For example, to create a red sphere, enter:

Example: Assigning Color to a Shape

sphere with
color =<100>; // Sets the RGB values so thatR=1,G=0,B=0
end;

The system for assigning colots to shapes works in a hierarchical manner similar
to the way that the transformation stack works. Fach time you begin a new
shape definition or instance, you enter a new context. The color that gets
assigned to a primitive is the color that is closest to the shape in the context
of the hierarchy. This makes it easy to specify the colors of special portions of
the shape and leave the rest of the shape ‘unpainted.” Then, when you assign
a color to an instance of the shape, that color only applies to the ‘unpainted’
parts of the shape that don’t already have a color previously assigned to them.
For the parts of the shape that have already been assigned a colot, the previously
assigned color takes precedence.
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Predefined Colors

For your convenience, Hypercosm provides a number of predefined colors. The
following chart shows the names of the available colors and the RGB values
that each color represents, as defined in colors.ores.

Table 3-1: The RGB Values of Hypercosm’s Predefined Colors

Name RGB Name RGB
Values Values

white 111 raspberry 10.5 g
black 000 pink 1.6.7 &
grey 5.5.5 flesh 9.7.6 &
red 100 beige 1.9.85
green 010 lime_green .5.80
blue 001 olive 4.50
cyan 011 evergreen 0.4.25
magenta 101 teal 0.75.6
yellow 110 aqua 0.75.75
orange 1.50 turquoise 0.7.9
brown 35.20 sky_blue .6.751
gold 9.8.3 azure .35.3.75
maize 8.70 lavender .8.6.9
brick .5.150 purple .6.15.75
rust 7.3.1 violet 50.9
charcoal 2.2.2 eggplant 30.2

In addition to these colots, Hypercosm provides two procedures, light and dark,
that make colors lighter or darker by mixing them with white or black. Using
these procedutes, you can make colors such as light yellow or dark green. The
procedures may also be called repeatedly so you can create colors such as light
light yellow or dark dark green.

Example: Using Predefined Colors & Color Modlifiers

cone with color = red; end;
plane with color = light teal; end;
torus with color = dark dark blue; end;
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Materials

In the line-drawing modes, the colors that appear in a picture are simply the
colors that were assigned to the respective shapes. In the shaded modes,
however, the apparent surface color varies because of lighting, shadows, and
other factors. How the color varies across an object’s surface also depends on
the material the object is made of. Hypercosm allows you to specify different
material types for each shape you make.

The three main predefined materials are chalk, plastic, and metal. If a material
is not explicitly assigned, shapes are shaded as though they wete chalk; that is,
they appear to have a non-glossy, non-reflective surface such as chalk or paper.
A plastic shape is shinier than chalk, and a metal shape is also shiny, but much
more reflective, so it is darker where it does not directly reflect light.

To assign a material to an object, change the global variable material when you
make an instance of the object. For example, to create a metal sphere, write:

Example: Assigning a Material to a Shape

sphere with
material is metal;
end;

To set the color of a material, use this format:

Example: Assigning a Colored Material to a Shape

sphere with
material is metal colored light blue;
end;

Another useful material type is constant_color, which effectively nullifies shading
effects. This is very useful when you are modeling a shape that should be
luminous, like a light bulb or a TV screen. When you use a constant color
material, you must also specify what color the material should be.

Example: Assigning a Constant Color to a Shape

sphere with
material is constant_color orange;
end;
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Coloring Precedence

The global material variable takes precedence over the color variable when
objects are drawn. If neither a color nor a material is assigned, the default color
for each primitive will be used.

Table 3-2: Order of precedence of colors and materials from highest to lowest

material of object
material of parent object

color of object
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color of parent object

default color for that primitive

Textures

The easiest way to add interesting, complex features to the surfaces of your
shapes is to use Zextures. When a shape is textured, an image from an image file
is mapped onto it. Using textures, you can map an image of the earth onto a
sphere, or map an image of a crowd across the seats of a virtual stadium. You
can create a virtual room inside of a wallpapered box, or move a scene ‘outside’
by surrounding everything with a sky-textured sphere.

Figure 3-56: A Scene Using Textures

To create a texture in OMAR, you create a new material type that incorporates
an image file. There are a few different ways to do this, but the easiest way is
to use the poster keyword. The following listing demonstrates how to use the
poster keyword to create a textured image of a satellite.

Textures 51



Listing 3-6: A Textured Satellite Scene Using the poster_Keyword

do satellite_anim;

include "3d.ores";

include "anims.ores"; // "anims.ores" is needed for the mouse_controlled_picture procedure.
material type solar_cell_material is metal poster "satellite.jpg"; // Creates a texture shaded like metal.
material type panel_material is chalk poster "panels.jpg"; // Creates a texture shaded like chalk.
shape earth is

sphere with

magnify by 200;
y material is chalk poster "earth.jpg"; // Sets the material to a texture shaded like chalk.
end;

end; // earth

shape dish is
cylinder with radius = .1; end1 = <0 0 0>; end2 = <0 -2 0>; end;
paraboloid with
top = <0 -1 0>; base = <0 -2 0>; radius = 2;
material is plastic colored charcoal;
end;
end; // dish

shape satellite is
cylinder with
scale by 4 along <00 1>;

material is panel_material; /[ Sets the material to the panel texture.
end;
block with

vertex = <-6 0 0>; sidel = <12 0 0>; side2 = <0 .2 0>; side3 = <00 3>;

material is solar_cell_material; // Sets the material to the solar cell material.
end;
// capping bulges:

sphere with center = <0 0 4>; vmin = 0; end;
sphere with center = <0 0 -4>; vmax = 0; end;

// radio dishes:

dish with move to <0 0 2>; end;

dish with move to <0 0 -3>; rotate by -135 around <0 0 1>; end;
end; // satellite

picture satellite_picture is
distant_light from <0 -10 3>;
satellite with material is metal colored light orange; end; // Note: because of coloring precedence
/[ rules, this line will only change the material of the
// "capping bulges" and the cylinder in the "dish."
earth with move to <-200 250 -100>; end;
end; // satellite_picture

anim satellite_anim with
facets = 10; // facets, eye, and lookat are parameters discussed in later chapters.
eye = <5-20 5>;
lookat = <-300>;
_ ambient = <.1.1.1>; // Ambient lighting should be low because this is a space scene.
is
mouse_controlled_picture satellite_picture; // This lets you use mouse controls to change the view.
end; // satellite_anim
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Note that a poster must use one of the standard materials desctibed in the
Materials section above: chalk, plastic, metal, or constant_color. When you make
a textured material, the image you specify is blnded with the material’s color.
Thus, color and shading affect textured materials as well as normal materials.
For this reason, when you use a constant_color together with a texture, you’ll
probably want to use white, so that all the colors of the texture are pure.
However, you could just as easily blend an image with a non-white color to
produce a differently hued or darker texture.

In addition to the poster keyword, there is also a painted keyword, and a
textured keyword. The painted keyword takes an image type parameter and is
useful if you want to use the same image for multiple textures, but only wish
to load it once.
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Example: Using the Image Type

image type star_image named "stars.jpg"; ~ // Now, "stars.jpg" has been loaded into star_image.
material type white_stars is constant_color white painted star_image;
material type red_stars is constant_color red painted star_image;

The textured keyword takes a texture type parameter. The texture type is an
OMAR subject defined in native_textures.otres. To understand how to use the
texture type propetly, you may need to review the sections on object-oriented
programming in The OMAR Programming Langnage Reference Manual and
Programming Guide. Using a texture type allows you to turn on or off special
texturing features, such as mipmapping and interpolation, whose propetties are
beyond the scope of this manual.

Figure 3-57: The Texture Type and its Methods

enum texture_status is invalid, disabled, unloaded, loaded;

subject texture does
native verb new
using image type image;
with
boolean interpolation is on;
boolean mipmapping is on;
boolean wraparound is on;
end; // new

native texture_status type question status;
native verb finish_loading;
end; // texture

The texture type’s most useful feature is that it allows you to check the current
status of a particular texture. The Hypercosm system uses deferred texturing, which
means that it draws all graphics immediately, even if textures haven’t been loaded
yet, and then includes the textures in the graphics as soon as they’re loaded.

Sometimes textures take a while to load, especially if they use large image files.
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For this reason, you may want to delay drawing a textured shape, or color it
differently, until its texture is ‘ready’ to be drawn.

You can use the status method to determine whether a particular texture has
been loaded, or is still unloaded. You can also use the finish_loading method to
prevent deferred texturing, and force a texture to load before your program
proceeds with drawing.

In some cases, a texture may never be rendered at all. The image file may be
invalid, which means it doesn’t exist, cannot be found, or is not a recognized
image file type. Texturing might also be disabled. This occuts on computers that
do not support texturing, and many computers still do not. You can use the
status method to determine if a texture is invalid or disabled, and then adjust
your graphics accordingly.

Example: Using the Texture Type

image type lightwood named "lightwood.jpg";

texture type lightwood_texture using lightwood;

texture type scratched_texture using (new image type named "scratched.jpg") with
interpolation is on;
mipmapping is off;

end;

material type wood_veneer is (plastic textured lightwood_texture colored brown);
material type brushed_metal is (metal textured scratched_texture);

if scratched_texture status is disabled then // Check whether this machine supports
: block with material is metal colored grey;  // texturing or not.
else
scratched_texture finish_loading; /[ Prevent deferred texturing

if scratched_texture status is invalid then
block with material is metal colored grey;

block with material is wood_veneer;
end;
end;

The Hypercosm system can create textures from GIF, JPEG, or Targa image
files. To be able to view textures, your machine must have 3D graphics hardware
suppott. If you’re producing a web applet, remember that even if your computer
can render textures, other computers running the same OMAR applet may not
be able to render textures.
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Procedural Modeling

Most graphics systems desctibe each object as a simple list of the component
parts. Since Hypercosm uses a complete programming language, you can define
shapes at a much higher level than this, in a process known as procedural modeling.

Procedural modeling allows you to describe objects by giving the instructions
necessaty to generate the component parts of the object instead of explicitly
listing the parts. Procedural modeling is especially effective for defining objects
which have a lot of repetition or self-similarity. For example, to desctibe a
picket fence, instead of simply listing the locations of each picket, you could
instead describe the fence by writing a snippet of code to repeatedly create
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the pickets a certain number of times while moving each picket over by a
certain amount each time.

Another example where procedural modeling is very effective is in describing
natural phenomena. Consider a complicated object such as a tree. If you were
to describe how a tree looks by describing each and every twig, leaf and branch,
you would have a very large description which doesn’t really get at the essence
of the tree. Instead, you could describe a tree by saying that it has a trunk which
divides into branches and each branch divides into smaller and smaller branches
until the little twigs end in leaves. This description simply relates sow the tree
is created, rather than describing the entire tree itself, and that’s where the power
of procedural modeling lies.

Parametric Procedural Models

To create procedural models, you have to learn how to use the OMAR
programming language, which is described in the OMAR Programming Language
Reference Mannal and Programming Guide. The rest of this section gives a brief
overview of the kinds of things you can do with procedural modeling, along
with some code examples.

One technique for creating flexible models that can easily be varied is to provide
the models with parameters. The idea behind parameters is to use the same
object description with different values to create different objects. The picket
fence from the example above could have the number of pickets as a parameter.
Then the same object description could be used to create fences with 100 pickets
or 1000 pickets.
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The following two examples illustrate how a shape desctiption, crawler, can be
given extra flexibility by using a variable parameter, treads.

Figure 3-58: Crawler with Treads = 10

Fractals in Nature

Many shapes in nature have the characteristic that if you examine them on a
small scale, you see the same structure that you see on a large scale. If you look
at a mountain, you see that it has many rocky outcroppings which in turn each
look like little mountains. Each individual rocky outcropping is made up of large
boulders which in turn look like even littler mountains, and so forth. The same
thing goes for trees. A tree has a few large branches, which are each similar to
smaller trees. The large branches have smaller ones, which have even smaller
branches until you get to the tiny branches, which have leaves attached. This
property is called se/f-similarity.
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Figure 3-60: Tree with Branching = 2
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Implementing Fractals

To implement fractals on the computer, you express the self-similar property
of objects by having the object contain smaller copies of itself. The definition
of the objects is therefore, recursive. All recursive objects must have a point at
which the recursion stops or else the computer will try to build an infinitely
recursive object and eventually fail. For the tree example, the recursion stops
when the tiny branches turn into leaves. A stopping point can be specified by
having the object take an integer parameter that indicates the recursion level.
When the object creates one of its recursive parts, it increments the recursion
level one step closer to the stopping level so that eventually, after so many
steps, the recursion stops.
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In the tree example below, the recursion level is indicated by the integer named
branching.

Listing 3-7: A Fractal (Recursive) Tree

do tree_picture;
include "3d.ores";

shape tree with
_ integer branching = 10; // the recursion level
is
shape leaf is
sphere with radius = .4; color = green; end;
end; /] leaf

// trunk
cone with
endl =<000>; end2 =<001>;
radiusl = .2; radius2 = .1; color = brown;
end;
if branching > 1 then
/ branches
tree with
branching = static branching - 1;
rotate by 60 around <0 0 1>;
rotate by 30 around <01 0>;
magnify by .7; move to <0 0 1>;
end;
tree with
branching = static branching - 1;
rotate by -60 around <0 0 1>;
rotate by -30 around <0 1 0>;
y magnify by .7; move to <0 0 1>;
end;

leaf with move to <0 0 1>; end; /[ leaf
end;
end; /] tree

picture tree_picture with
eye = <2 -8 4>;
lookat = <0 0 1.25>;
field_of_view = 40;

distant_light from <1 -3 2>;

tree;

disk with color = dark green; end;
end; /[ tree_picture
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In the following ‘sphereflake’ example, the level of recursion is indicated by the
integer vatiable named level.

Figure 3-62: Sphereflake with Level = 2
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Figure 3-63: Sphereflake with Level = 5
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Listing 3-8: A Fractal (Recursive) Sphereflake

do sphereflake_picture;

include "3d.ores";

shape sphereflake with
integer level = §; //the level of recursion
_ scalar factor = 0.5; //determines the relative size of each level of spheres
is
shape miniflake is
sphereflake with
level = static level - 1;
magnify by factor;
move to <0 0 (1 + factor)>;
end;
end; // miniflake

if level mod 3 = 0 then
color = orange;

elseif level mod 2 = 1 then
color = dark raspberry;

else

color = light teal;
end;
// Center sphere

sphere with material is metal colored color;

/[ Surrounding sphereflakes

if level > 1 then
miniflake;
miniflake with rotate by 180 around <1 0 0>; end;
miniflake with rotate by 90 around <1 0 0>; end;
miniflake with rotate by -90 around <1 0 0>; end;
miniflake with rotate by 90 around <0 1 0>; end;

’ miniflake with rotate by -90 around <0 1 0>; end;
end;
end; // sphereflake

picture sphereflake_picture with
eye =<2 -84>,
field_of_view = 70;
reflections is on;
shadows is on;
facets = 0; //sets the render_mode to ray tracing

distant_light from <.3-.5 1>;
sphereflake with
level = 7;
end;
end; /| sphereflake_picture
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CHAPTER 4
Viewing

As has been noted, the computer graphics process is a lot like photography. In
both systems, a good picture depends as much upon the camera placement as
it does on the subject matter and lighting of the scene. Using the Hypercosm
system, once you’ve modeled a scene, you can easily generate several different
renderings of the same scene with little effort, just by changing the position of
the ‘virtual camera.” An architectural rendering, for example, has a very different
feel to it depending upon whether you choose to place the camera in front of
a building, inside of it or above it, as in an aerial shot.

Hypercosm also has an assortment of different camera lenses from which to
choose. Wide angle lenses may be used to emphasize the wide open expanse
of a fractal mountain landscape or the towering height of an imaginary
skyscraper. Telephoto lenses may be used to minimize or even eliminate
petspective to make an engineering design more understandable.

This chapter describes Hypercosm’s numerous viewing options.

Camera Placement

Any camera placement can be described to the computer by two parameters.
These are:

» eye—The location of the virtual camera.

* lookat—The location towards which the camera points.
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If the camera positioning variables are not explicitly set in your OMAR files,
the defaults, found in native_render.otes, will be used.

Figure 4-1: The Camera Positioning Variables & Defaults

vector eye = <10 -30 20>;
vector lookat = <0 0 0>;

If you want to set these parameters (or any of those described later in this
chapter) yourself, you can do so in the with section of a picture or anim.

Example: Setting the Camera Parameters

picture scene with

eye = <-2-4 3>;
lookat = <-101>;
is
el
end;

Figure 4-2: Camera Geomelr

Camera Orientation

Once you specify where the camera is and in what direction it is pointed, you
can tilt the camera around in the frame of reference of the camera using the
parameters roll, yaw and pitch.

* rol—The angle of the camera’s tilt around the line of sight. A positive roll
tilts the camera in a clockwise direction, which spins the screen image
counterclockwise.

* yaw—-Use this angle to turn the camera to the left or right. A positive yaw
turns the camera to the right, which causes the image to swing to the left.
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* pitch—Use this angle to tilt the camera up and down. A positive pitch tilts
the camera upwards (as in an airplane).

Figure 4-3: The Camera Orientation Variables & Defaults

scalar roll = 0;
scalar yaw = 0;
scalar pitch = 0;

Field of View

Another important viewing parameter is the field of view. Imagine the volume
of space that is taken in by the camera lens to be a pyramid, narrowing to a
point at the camera and extending outwards infinitely in the direction that you
are looking. This is known as the wviewing frustum. The field of view is specified
as the angle between the opposite sides of the viewing frustum.

A camera’s field of view is usually about 60 degrees. If you use a wide angle
lens, the field of view is somewhere around 80 to 100 degrees. A telephoto
lens usually has a field of view around 10 to 30 degrees.

Figure 4-4: The Field of View Variable & Default

scalar field_of_view = 60;

Figure 4-5: The Viewing Frustrum
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Table 4-1: Fields of View of Some Popular 35mm Lenses

Focal Length Lens Class Field Of View
(mm)

8 Ultra Wide Angle 170
17 Very Wide Angle 140
28 Wide Angle 110
35 Moderate Wide Angle 90
50 Normal 60
80 Moderate Telephoto 30
200 Telephoto 10

Projection

In computer graphics, as in photography, there is no perfect way to project the
three-dimensional world onto a flat surface. Cartographers face a similar problem
when representing the curved surface of the earth on a flat piece of paper.
While there is no perfect solution to the problem, there are several different
approaches, each with its own merits. Hypercosm supports four different useful
projection types: orthographic, perspective, fisheye, and panoramic.

Figure 4-6: The Projection Type, Variable, & Default

enum projection is orthographic, perspective,
fisheye, panoramic;
projection type projection is perspective;

The Orthographic Projection

The orthographic projection is distinguished from others by having a total lack
of perspective. That is, objects far away do not appear smaller than objects
close by, so everything in the image is on the same scale. This projection is
unusual because it doesn’t have a true counterpart in the real wotld. If you look
through a telescope, or other optical device with a tiny field of view, then the
image that you see is close to an orthographic image because there is very little
petspective effect.

The orthographic projection is useful in cases where you want to produce an
image without any perspective. This is common in engineering drawings because
you want to give a sense of the 3D geometry of the object without distorting
the relative scaling of various parts of the object.

Instead of a pyramidal viewing region, the viewing region takes the form of an
infinitely long block with a rectangular cross section. Because all the sides of
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the viewing region are perpendicular, you can no longer specify the field of
view as an angle, so for this projection, unlike the others, the field of view
variable sets the distance from one corner of the viewing region to the opposite
cornet.

Figure 4-7: The Orthographic Projection

Figure 4-8: An Orthographic Image
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The Perspective Projection

The perspective projection is the most common way to map our surroundings
onto a flat 2D surface and is therefore the default for the Hypercosm system.
If you were to build a pinhole camera that projected its image onto a flat piece
of film, the resulting image would use the perspective projection. Note that the
field of view used in this projection can never be more than 180 degrees because
there is no way of projecting light from behind the camera onto the film plane.
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Figure 4-9: The Perspective Projection

One characteristic of this projection is that straight lines in the real world project
to straight lines in the picture. This is useful to know if you are creating archi-
tectural renderings and you want the straight lines of the building to be straight
in the rendering. A drawback of this projection is that for wide fields of view,
it must severely distort the image in order to preserve the straight lines. Objects
toward the center tend to shrink and objects at the perimeter of the image are
stretched out. This is often especially disconcerting during animations because
as the camera pans across the scene, objects will enter the picture, shrink
noticeably as they cross the center of the image, and then stretch out again as
they approach the edge of the picture again.

You can understand this if you look at the model of the camera. Towards the
edge of the picture, the distance from the lens to the film increases, so the
magnification of the image increases in those areas proportionately. The problem
increases dramatically with wider fields of view. For very wide fields of view,
the fisheye projection may be more suitable.

Figure 4-10: A Perspective Image

66 Viewing



The Fisheye Projection

The fisheye projection is an attempt to model the camera more closely after
the human eye. In the pinhole camera analogy, instead of projecting the image
onto a flat piece of film, the image is projected onto a piece of film that is
curved onto the back of a sphere with the lens at the center. You can imagine
that this sphere represents the eyeball and the film represents the retinas.

Figure 4-11: The Fisheye Projection

An important characteristic of this projection is that it is capable of presenting
very wide fields of view, theoretically up to 360 degrees. For more moderate
fields of view, the stretching problems of the perspective projection are alleviated
since the film is the same distance from the film plane in all places.

One unavoidable problem with this projection is that straight lines in the scene
project to curved lines in the image. This may make fisheye projection
undesirable for many renderings.

Although the ‘fisheye effect’ may appear unnatural in very wide angle images,
humans actually see this way all the time but just don’t notice the effect because
our attention is fixed on a small portion of our vision. If you were to lie down
in the middle of a field, looking straight up at the sky, and focused your attention
on your peripheral vision, you would notice that you can see the horizon
appearing as a circular strip all the way around the perimeter of your 180-degree
field of view.
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Figure 4-12: A Fisheye Image

The Panoramic Projection

When people take wide angle pictures, they are usually interested in capturing
the detail that is visible in a strip near the horizon, and much less interested in
the sky above or the ground below. With this in mind, a special type of camera
was made that takes pictures by using a cylindrical strip of film and revolving
the lens in a circle around it. The results of this kind of photography can be
seen in Circlevision 360 theaters at places like Walt Disney World’s Epcot
Center, where the audience stands in a circular theater with images projected
along the entire inside surface of the cylindrical wall.

Since this projection is the only one that doesn’t have radial symmetry, the field
of view is measured across the horizontal dimension of the image instead of
across the diagonal. The field of view can encompass all 360 degrees in the
horizontal direction. A 90 degree field of view, for example would give you a
pie shaped region with the left edge and right edges of the image 90 degrees
apatt.

Figure 4-13: The Panoramic Projection
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The panoramic projections is similar to the fisheye projection in that straight
lines in the three-dimensional world do not project to straight lines in a
panoramic image. This projection may still be suitable for architectural
renderings, however, because if the camera is level, then all vertical straight lines
in the world will project to vertical straight lines in the image.

Figure 4-14: A Panoramic Image

Stereoscopic Pictures

In the real wortld, you perceive objects as having depth. Your ability to perceive

the depth of objects comes from the fact that your two eyes are separated from

one another, and therefore each eye sees a slightly different view. Your brain

integrates these two slightly different images into one three-dimensional image—
a stereoscopic image.

In order to simulate stereo vision, Hypercosm uses two separate virtual cameras,
one for each eye, and simultaneously presents a different image to each eye.
The difficulty here is how to simultaneously present a different image to each
eye when both of your eyes are looking at the same computer monitor.

Hypetrcosm uses a technique called anaghph. This is the same technique used in
the 3D movies that were popular in the 1950s. The technique takes advantage
of color filtering: a red image can pass through a red filter, while a blue image
is filtered out, and a blue image can pass through a blue filter, while a red image
is filtered out. You can therefore display two separate images on the same screen
by compositing their colors together and using two different complementary

colored filters over the eyes to allow one image to pass through to each eye.
The compositing operation may work with any two colors, but two comple-

mentary colors are necessary to achieve the stereo effect since each filter must
be able to pass one image and filter out the other.
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Figure 4-15: Stereo Viewing Geometr

Stereo Glasses

To view a steteo image, you must wear a pair of special steteo glasses with a
differently colored filter over each eye. The convention that Hypercosm uses is
to place a red filter over the right eye and a blue filter over the left eye. You
can make your own colored glasses by placing pieces of colored acetate over a
pair of clear lenses. Colored acetate is widely available at art supply stores.
Several layers of colored cellophane works too, but is not as clear as the colored
acetate.

How to Use the Stereo Feature

To activate the stereo rendering, set the stereo parameter to a value greater than
0. This steteo parameter refers to the angle between your two eyes in relation
to the lookat point.

Figure 4-16: The Stereo Variables & Defaults

scalar stereo = 0;
vector lookat = <0 0 0>;

The steteo angle is measured in degrees. Values between about 5 and 10 work
well. Too little stereo separation, and the depths of objects are difficult to
petceive. Too much stereo separation, and youll have a hard time ‘fusing’ the
two images in your mind and it will soon give you quite a headachel

You may notice that some parts of the image appear to go into the computer
screen and some parts seem to float out in front of the computer screen. This
is controlled by the lookat parameter. Objects that are farther away from the
eye than the lookat point recede behind the screen and objects that are closer
than the lookat point float out in front of the computer screen.
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Changing Stereo Colors

Some pairs of stereo glasses have the blue filter over the right eye and the red
filter over the left eye, or you may want to experiment with using your own
colored filters, so Hypercosm provides a way to change the colors used in the
stereo renderings.

Figure 4-17: The Stereo Color Variables & Defaults

vector left_color = cyan;
vector right_color = red;

Also, you may need to tweak the colors slightly to match the phosphor colors
of your computer monitor. Perhaps you just want to experiment with different
colored filters. Theoretically, any two complementaty colors should work.

Producing Stereo Pairs

Sometimes it is desirable to produce a pair of images that can be photographed
off the screen and placed in a stereo viewer to yield stereo images in true

colot. To produce a rendering from the right eye’s point of view, set right_color
to white and set left_color to black. To produce a rendeting from the left eye,
set left_color to white and right_color to black.
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CHAPTER 5
Rendering

The term rendering refers to the process of producing an image on a computer
screen. Whereas modeling commands control what an image contains, rendeting
commands control how the image is displayed (for example, a cube may appear
as a shaded block or as a group of connected lines). This chapter details
Hypercosm’s wide vatiety of sophisticated rendering capabilities.

Window Dimensions & Position

You can easily control the dimensions of the drawing window. Keep in mind
that the larger the image, the longer it takes to produce, because more pixels
must be rendered. For line drawings, the rendering time increases roughly linearly
with the window dimensions, because if you double the window dimensions,
then drawing a line requires drawing approximately twice as many pixels.

When you use the shaded rendering modes (described later), however, the time
it takes to produce an image increases linearly with the area of the picture. This
is because the time is roughly proportional to the number of pixels in the image,
which is in turn proportional to the image’s area. If you double an image’s
height and double its width, its area is four times larger, and the image takes
four times longer to render.

These parameters (and others discussed in this chapter) may be set in the with
section of a picture or anim. If these parameters ate not explicitly set in your

OMAR files, their default values are used.

Figure 5-1: Window Dimensions Variables & Defaults

integer width = 512;
integer height = 384;
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Hypercosm Studio users should note that the height and width values that you
set in your project settings take precedence over whatever values you may set
in your code. If you’d rather set height and width in your code, you must
prevent Studio from passing height and width as program arguments. (See the
Hypercosm Studio User Guide for more details on this feature.)

The drawing window can also be moved about on the screen. You can center
it, or move it to the upper left hand corner of the screen, if you prefer. You
can even move it off the screen entirely. The default position (specified in
native_windows.ores) is the screen center.

Figure 5-2: Window Position Variables & Defaults

integer h_center = screen_width div 2;
integer v_center = screen_height div 2;

Screen Dimensions

Since computer makers have all decided to make machines with different screen
resolutions, Hypercosm must ask the computer about its screen. This lets you
create an image that takes up the whole screen, or just a fraction of the screen,
no matter what computer displays that image.

Some computers have a variety of different video modes to make your life even
more complicated. On these machines, the screen width and height reported
depend upon the video mode in use.

Figure 5-3: Functions for Finding the Screen Dimensions

integer question screen_width;
integer question screen_height;

Although the program can determine the shape and size of the screen in terms
of the number of pixels, it has no way of knowing the actual, physical shape
of the screen. You may have to supply this yourself to ensure images are not
squashed or stretched. This information is given as the aspect ratio.

The aspect ratio of the screen is a measure of how elongated the screen is in
the vertical direction. A skyscraper has a high aspect ratio and a sports car has
a low aspect ratio. The aspect ratio of a square is exactly 1. Most computer
monitots are built so that the ratio of (height / width) is about 3/4, or 0.75.
Because of slight differences among manufacturers, however, this is not always
exactly the case, so an image that looks fine on one computer monitor may
look slightly squashed ot stretched on another. To compensate for this,
Hypercosm lets you set the aspect ratio of the screen so that the program
automatically squashes or stretches the image to compensate for the monitor.

74 Rendering



To do this, simply measure the height and width of your computer screen and
use the (height / width) as the aspect ratio.

Figure 5-4: Screen Aspect Ratio Variable

scalar aspect_ratio;

Background Color

Changing the background color is a simple matter of setting the variable,
background. The background color can have a profound effect on the appearance
of shapes in the scene because highly reflective materials such as metals depend
strongly upon their surroundings.

Figure 5-5: The Background Color Variable & Default

vector background = black;
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Rendering Mode

A single image may take anywhere from a fraction of a second to many hours

or days for a computer to generate. The speed at which an image is generated
depends on many factors related to how realistic you want the image to be
and the complexity of the image. For this reason, several different rendering
modes are available that vary widely in realism and speed.

In addition, you may want to use different rendering techniques for aesthetic
reasons. The most desirable picture for a particular application may not always
be the most realistic one. In some cases, different rendering modes may be

mixed by resetting the render_mode variable at various locations in a program.

Figure 5-6: The Render Mode Type, Variable & Default

enum render_mode is pointplot, wireframe,
hidden_line, shaded, shaded_line;
render_mode type render_mode is shaded;

The Pointplot Rendering Mode

This rendering mode simply draws the scene as a collection of points. Polygonal
objects such as cubes or polygons have a point at each vertex while curved
objects such as spheres have points evenly spaced upon a mesh across their
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surface. The number of points in the mesh can be increased or dectreased using
the facets variable, which is described in the Tesselation section.

Figure 5-7: The Pointplot Rendering Mode

The Wireframe Rendering Mode

This rendering mode produces a common style of computer graphics images in
which objects are rendered by drawing only their edges. For curved objects,
Hypercosm draws a curved grid of straight lines across the surface like the
longitude and latitude lines that are found on a globe. Since you are only drawing
the edges of objects, you can see through them. This rendering mode makes
objects tend to look like they are constructed from a skeletal framework of thin
wires, hence the name, wireframe. The edges that are drawn are determined by
the edge mode (described in the next section) and may include all edges, the
outline edges, or just the silhouette edges.

Figure 5-8: The Wireframe Rendering Mode
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The Hidden Line Rendering Mode

The hidden line rendering mode increases the realism of the wireframe rendering
mode by using hidden surface removal. This means that closer objects block
objects that are farther away. As in the wireframe rendering mode, the edges
that are drawn are determined by the edge mode.

Figure 5-9: The Hidden Line Rendering Mode
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The Shaded Rendering Mode

This rendering mode draws the surfaces of objects as you see them in the real
wortld. Closer objects block farther objects from view and surfaces are shaded
with respect to the lighting in the scene. In addition, shadows, reflections, trans-
parency, fog, and other effects may be added to provide additional realism. The
shaded mode is Hypercosm’s default rendering mode.

Figure 5-10: The Shaded Rendering Mode
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The Shaded Line Rendering Mode

This rendeting mode is a hybrid between wireframe and shaded modes. The
edges of all the objects are drawn, as in wireframe mode, but the surfaces of
the objects are also drawn. Objects may be shaded using all of the normal
options of the shaded mode, as described later in the Shading section.

Figure 5-11: The Shaded Line Rendering Mode

Edges

In the wireframe and hidden_line rendering modes, where only the edges of
shapes are drawn, you can choose which edges are rendered. Most 3D graphics
systems render every edge of an object, which has the tendency to create
cluttered and confusing renderings. Hypercosm can ‘clean up’ the renderings
considerably by drawing only selected edges.

Figure 5-12: The Edge Mode Type, Variable, & Default

enum edges is silhouette, outline, all;
edges type edges is outline;
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All Edges

If all edges are drawn, objects have an adequate amount of detail; however, for
some complex objects, you may find that the images appear cluttered and also
that some details may be obscured by the lines of other objects.

Figure 5-13: All Edges
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Silhouette Edges

The silhouette mode is much less cluttered because it draws only the silhouette

edges of curved objects. However, the images are often too sparse to convey
the three-dimensional geometry of the scene accurately.

Figure 5-14: Silhouette Edges
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Outline Edges

Outline mode draws the silhouette edges just like silhouette mode, but also adds
lines on the surface of the curved objects at regular intervals to better convey
the true shape of the object.

Figure 5-15: Qutline Edges

Tessellation

Hypercosm’s renderer is capable of drawing a number of basic, or primitive,
surface types. Some of these primitives are simple flat primitives, such as
polygons and triangles. Others are more complex cutved surfaces such as
spheres and toril. Because the mathematics involved with curved surfaces is
more complex than the mathematics for flat surfaces, the curved surfaces can
be more quickly rendered by breaking them down into a multitude of flat facets.
This process is also called Zesse/lation.

Hypercosm uses a few tricks to hide the tessellation to avoid your having to
be concerned with the mechanics of the rendering process. For instance, the
outline rendering mode draws only the silhouette edges and the important edges
so we don’t have to see the facets that are used internally by the renderer. Also,
the number of facets has a default value so you don’t necessarily have to be
aware of it.

However, if you need faster rendering and can sacrifice some quality or if you
wish to produce very high quality renderings and don’t care as much about the
time that it takes, then you must be able to control the number of facets
produced by the tessellation process. If you find that drawing is too slow, you
can decrease the number of facets, and although the curved surfaces will not
be as smooth, the drawing will be much faster. If you are interested in drawing
a higher quality shaded image, you can increase the number of facets to make
them smaller. Changing the number of facets has no effect on flat surfaces.
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Figure 5-16: The Tessellation Variable & Default

integer facets = 6;

Figure 5-17: Facets =2
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The facets are more noticeable in some rendering modes than in others. For
example, in the wireframe mode, the facets are more noticeable when you draw
all of the edges than if you draw just the silhouette or outline edges. In the
shaded modes, the facets are more noticeable when you use face (flat) shading
than when you use vertex (Gouraud) or pixel (Phong) shading. (The shading
modes are described later in this chapter.)

Ray Tracing
Ray tracing is a method of rendering without tessellation. If you want very high
quality images, you can choose to render the objects from their exact mathe-
matical surface descriptions, instead of tessellating them. To do so with the
Hypercosm system, you use an algorithm that is known as ray tracing because
it simulates the behavior of light rays.

To ray trace an image, set the facets variable to 0. The only disadvantage to
rendering this way is that it takes longer to create an image; use this technique
spatingly in animations. A common practice is to do most test renderings with
the tessellated shading and to use the high quality rendering for the finished
image when you have all of your objects and lighting set up the way you want it.

Scanning

When Hypercosm uses the ray tracing mode, you will notice that the picture is
not drawn in the same way as it is when you use regular shading. When
Hypercosm uses the regular shading algorithm, each object is created by drawing
each facet of the object sequentially. In ray tracing, however, there are no facets,
so Hypercosm draws the image by scanning imaginary light rays across the object
to see where they hit the surface, and what color the surface is at that point.
Hypercosm can scan the rays across the entire picture just as easily as scanning
the rays across each object one at a time. This is why you see the entire picture
being drawn all at once instead of each object drawn one at a time.

When it uses ray tracing, Hypercosm fires a ray out into the scene from every
pixel on the screen. Since it doesn’t matter what order the rays are fired in,
Hypercosm provides three different scanning modes: linear, ordered, and random.
All three modes produce the same image when finished, but each draws the
image in a different order.

Figure 5-20: The Scanning Type, Variable, & Default

enum scanning is linear, ordered, random;
scanning type scanning is ordered;
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Linear Scanning

In linear scanning, Hypercosm starts at the top of the screen and works its way
slowly down to the bottom, completely drawing everything in the region of the
screen that it’s working on, before moving on to the next.

The problem with drawing the image this way is that you don’t get a good idea
of what the image will look like until it’s almost completely finished. Also, if
you have a mistake in the picture, like the wrong color or two interpenetrating
objects, for example, you won’t see the mistake until the renderer gets to that
part of the image, which, if you are very unlucky, may not be until the end.

Watching the image being created in this way can be a little like watching the
grass grow. If you don’t want to watch the image being created, however, then
this mode is preferable because it is slightly faster than the other two scanning
modes.

Ordered Scanning

This rendering mode is much more fun to watch because it scans the light
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rays across the image in a grid which becomes progressively finer as the picture
gets closer to being finished. This enables you to get a general idea of what
the image will look like very soon, with the finer details being filled in later.

Random Scanning

This mode is much like the ordered mode, except that instead of scanning the
image in a progressively finer grid, it scans the image in a generally random
pattern, so it looks like the rays are being scattered randomly across the image.
This has the effect of making the image seem to ‘dissolve’ into view. This mode
is slightly slower than ordered, but it is fun to watch.

A Note About Ray Tracing: Voxels

When using ray tracing, if the double buffer is not enabled, so you can see the
drawing taking place, you will notice that the program first draws an outline
view of the object and then proceeds to draw lots of boxes around the object
with the boxes getting progressively smaller. These boxes are called soxels and
are used internally by the program to speed up the ray tracing process.

Shading

In real life, when you look at the surface of an object, the color that you see
normally changes continuously across the surface. There may be sharp discon-
tinuities and there may be very gradual changes, but normally, the color of the
object never stays exactly the same as your eyes move across its surface.
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The computer has to perform a number of mathematical computations to find
what the color is at any given point on the object. Because there are an infinite
number of points on any surface, you can’t ever know exactly what the color
of the object is at every point on its surface.

Instead, Hypercosm has to ask what the color is at various places, and how this
is done is controlled by the variable called shading. The shading mode determines
how often Hypercosm performs the shading calculations. When it evaluates the
lighting model more often, you get more accurate shading at the cost of a slower
rendeting time. The three different shading modes are face, vertex, and pixel.

Figure 5-21: The Shading Type, Variable, & Default

enum shading is face, vertex, pixel;
shading type shading is vertex;

Face Shading

When you use face shading, Hypercosm computes the color at each facet by
sampling it at one vertex and then using that color for the entire facet. In
computer graphics this is also known as flat shading because it makes each facet

looks flat.

Figure 5-22: Face Shading
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Vertex Shading

When using face shading, you may find that even when you make the facets
very tiny, they are still visible. This is because the eye is very sensitive to the
sharp changes in color that occur across the polygon boundaries. To eliminate
the sharp discontinuities in the shading, you can use vertex shading, a technique
that computes the lighting at each vertex and blends, or interpolates, the color
across the facet. This gives the facet the appearance of being curved. In
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computer graphics this technique is also known as Gowraud shading, after the
French mathematician, Henri Gouraud.

Figure 5-23: Vertex Shading
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Pixel Shading

While vertex shading tends to work extremely well when the color of an object
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changes smoothly across its surface, it is less effective on objects that are
textured or very reflective. For these kinds of surfaces, sampling the color at
every vertex isn’t good enough because the color of the surface may change
radically in between the vertices. In these cases it’s best to sample the shading
at every pixel. The pixe/ shading technique, also known in computer graphics as
Phong shading, recomputes the color for each tiny dot on the surface of the object.

Since an object typically has only a few hundred vertices, and a computer screen
typically has around a million pixels, the technique can be considerably slower
than vertex shading, and is a poor choice for interactive applets.

Figure 5-24: Pixel Shading
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Note that although the pixel shading technique often looks almost as good as
rendering the exact surface description, it still uses the underlying tessellation
of the objects, which is visible in the segmented silhouette of curved objects.
If Hypercosm were rendering from the exact surface description (ray tracing),
these silhouettes would be perfectly smooth.

Feature Abstraction

Often, when you are rendering scenes with a lot of dynamic range, you find

that a large amount of time is spent drawing tiny little details that you can barely
see, because they occupy only a few pixels on the screen. If the object only

occupies a few pixels on the screen, then it is a waste of time to go through
all the mathematical operations necessary to draw the complete object. When
the object is very small, it may suffice to substitute a very simple object, like a
box, for the more complicated object. This is called feature abstraction.

Figure 5-25: The Feature Abstraction Variable & Default

scalar min_feature_size = 0;

The variable min_feature_size, specified as a fraction of the field of view, is the
size on the screen below which the object will appear as its bounding box. For
example, if you want objects which occupy less than 1/20 of the field of view
to be drawn as simple boxes, then set min_feature_size = .05; If you set
min_feature_size to a value that is fairly large, like .1, then you can easily see
the objects turn into boxes when they drop below the minimum size, which
can be distracting. The feature abstraction capability is disabled entirely when
min_feature_size is set to 0.

Coarse Ray Tracing

You can use feature abstraction in ray tracing mode to cause the ray tracer to
ray trace the image coarsely, drawing the image as an array of rectangular blocks
of a certain size, instead of tracing a ray for every pixel on the screen. This is
useful for producing ray traced animations that are capable of running in real-
time. No computer is fast enough to produce images at animation rates where
a ray is cast at every pixel.

If you set min_feature_size to 1/20, then the rectangles that compose the image
are roughly 1/20 of the size of the image as measured across the diagonal of
the image.
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Antialiasing
Because the computer screen is composed of a grid of discrete dots, or pixels,
the rendering process causes certain artifacts which atre collectively known as
aliasing. You can see an example of aliasing when you draw a straight line or
an object with many straight edges. Unless these lines are completely vertical
or horizontal, the computer shows a series of stair steps, known as the jagges.
Methods for eliminating the jaggies are known as antialiasing.

The jaggies can never be completely eliminated because there is no perfect way
to represent a diagonal line on a grid with only vertical and horizontal elements.
The stair-step effect can be lessened, however, by blending the lines so that
pixels that are closer to the line are affected more by the color of the line. To
enable antialiased line drawing, set antialiasing to true.

Figure 5-26: The Antialiasing Variable & Default

boolean antialiasing is false;

Figure 5-27: Close-up of Lines Showing ‘laggies’
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Supersampling
When you are creating line drawings of objects, antialiasing is fairly easy because

the lines are a uniform shape and color. When you are computing the antialiasing
for material images, however, the antialiasing problem becomes more complex.

The color of a shape’s surface may change anywhere on the surface because of
surface textures and the effects of the surrounding environment. It is not
possible to compute what the exact contribution of surface color will be to each
pixel. Instead, Hypercosm must sample the pixel at a number of places to
determine what may be a good approximate average surface color at the pixel.
It can never know exactly what the precise color for that pixel is because it
would have to sample it an infinite number of times. In practice, however,
sampling a fixed number of times provides a good enough approximation to
the exact pixel color to yield good results. You can change the number of
samples per pixel by setting the vatiable, supersampling. The supersampling
algorithm is only used for shaded images.

Figure 5-29: The Supersampling Variable & Default

integer supersampling = 16;

Keep in mind that the amount of time that it takes to create the image is
proportional to the number of samples. If you take 16 samples per pixel, the
image will take 16 times longer to compute than an image with no supersam-
pling. Supersampling can easily make images take an impractical amount of time
to create.
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Figure 5-30: No Antialiasing

Figure 5-31: Supersampling = 4 Samples / Pixel
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Figure 5-32: Supersampling = 16 Samples / Pixel
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Shadows

Shadows are a common, everyday phenomenon, yet they are often omitted from
computer graphics because they are relatively hard to compute. With the
Hypercosm system you can enable them by setting the shadows variable to true.

The shadows that are cast by the distant, point, and spot light sources are sharp
because these are point light sources, meaning that the light sources are infin-
itesimally small. In the real world, shadows are often fuzzy because light is cast
by lights that aren’t so tiny in size, like fluorescent light bulbs.

Figure 5-33: The Shadows Variable & Default

boolean shadows is false;

Reflections

If the surface of an object is defined by a material such as metal that calls for
reflections, then you can enable the object to reflect by turning reflections on.
If no material type is specified, then you see no reflections.

Figure 5-34: The Reflections Variable

boolean reflections is false;

Refractions

Refraction describes the way that light is bent as it passes through a surface.
Hypercosm’s refraction variable turns on transpatency, which allows light to

pass through surfaces. If the surface of an object is defined by a material that
calls for refraction, such as a transparent or glass shader, then the refraction

effect is used. If the object has no material assigned, then you don’t get the

transparency effect.

Figure 5-35: The Refractions Variable

boolean refractions is false;
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Figure 5-36: No Shadows, Reflections, or Refraction
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Fog
Pictures that depict outdoor scenes often benefit greatly from the addition of
just a touch of fog. Even on a clear day, the atmosphere contains a certain
amount of dust and water vapor that tend to obscure distant objects. The world
in the computer is so perfectly clear, that unless you specifically add a touch
of fog, pictures that are supposed to depict the outdoors look fake.

Without fog, fractal mountain landscapes look like they are sitting on a table
top instead of stretching for miles in the distance. The fog tells you that the
objects are far away; this is known as depth cueing. If you atre rendering Big
Ben, you could make a thick fog. You can even make colored fog.

The color of the fog is determined by the background color. The thickness of
the fog is determined by the fog_factor variable. The fog_factor is the distance
at which an object is halfway obscured by fog. At this distance, the color of an
object is a mixture of half the color the object would be if there were no fog,
and half the background (fog) color. If you set the fog factor to 10, objects 10
units away are halfway foggy, objects farther away are very foggy, and objects
closer have very little fog attenuation. To create a gentle haze on this same
scene, you might set fog_factor to 500. Setting fog_factor to 0 eliminates fog
completely.

Figure 5-38: The Fog Variables & Defaults

scalar fog_factor = 0;
vector background = black;

Figure 5-39: Fog Physics
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Figure 5-40: A Gentle Fog

Figure 5-41: A Heavy Fog
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CHAPTER 6
Animation

Animation is, literally, the process of bringing something to life. To bring
imagery to life, you must make it dynamic, that is, give it the characteristic
property of life, the ability to change over time.

You can create the illusion of an animated image by presenting a sequence of
pictures in quick succession. If each image is only slightly different from the
previous one and the time between each image is short, on the order of 1/30
of a second, then the brain fills in the tiny gaps between the images and you
petceive a continuous, fluid animation. This is the underlying principle of all
forms of animation, including motion pictures, television, video, and Saturday
morning cartoons. It is also how Hypercosm animation works.

The Principles of Animation

Acceptable Frame Rates

Fluid animation displays at a rate of around 30 frames per second. Videotape
and television are shown at 30 frames per second. Film projectors traditionally
present a slightly lower frame rate of 24 frames per second. Some special
projector systems, such as IMAX, present 60 frames per second which requires
special projectors and film. Even at 24 frames per second, the number of
individual frames required for a short animation adds up pretty quickly, so you
can sometimes try to get by with a lower frame rate. If there is not much rapid
change in the animation, a lower frame rate may be acceptable. Below about
10 frames per second, though, the eye can detect the changes between frames
and the resulting animation may appear to be jetky instead of smooth and fluid.
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Animation Speed

Many computers are not yet capable of animation speeds that match what you
see on television or in the movies. The rule of thumb is that you can have
image quality or you can have speed, but not both. If you find that the animation
speed is too slow, you can take a number of steps to sacrifice image quality in
hopes of attaining enough speed to do the job. When you’re creating animations
to be placed on the web, even an animation that runs smoothly on your
computer may require a reduction in complexity in order to run smoothly on
other computers as well.

Real-Time Animation
If you wish to create real-time animations, you are almost certainly limited to
line drawing or simple shaded renderings. Many computers are still incapable
of producing shaded images at an acceptable rate and no computers are capable
of producing high quality shaded images with shadows and reflections at inter-
active rates.

Line drawing is always faster that shaded rendering. You can also increase the
drawing speed by reducing the number of facets. If your objects have lots of
little parts that don’t need to be drawn in full detail unless they are very close,
then you can raise the min_feature_size which tells Hypercosm to draw small
objects as their bounding boxes instead of drawing them in full detail.

High-Quality Animation

If you wish to create high-quality animations, a common technique is to produce
a quick, low-quality animation first to check the camera and object movements,
and sometimes the shading, before going on to invest a large amount of
computer time on a finished product. If you’re producing shaded images, the
more features that you enable, the slower the rendering becomes. The shadows,
reflections, and refractions in particular slow things down because they use ray
tracing to simulate light ray behavior. Face shading is faster than vertex shading,
and both face and vertex shading are faster than pixel shading. The slowest but
most realistic shading mode is ray tracing (used when facets = 0).

Animation with the Hypercosm System

When you animate images with Hypercosm, you create a series of pictures that
display in rapid succession. You could create a series of individual, slightly
differing pictures and run them in order, or you can use Hypercosm’s modeling
and rendering commands to change an existing image. For example, to create
an animation of a rotating sphere, you can create the sphere, then repeatedly
use the rotate transformation to rotate the image by a little bit at a time.

When you animate images you can change all kinds of things. For example you
can:
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* Animate shapes or light sources using transformation commands such as
move, rotate, skew, etc.

* Move around a shape by changing the camera positioning variables eye,
lookat and roll.

* Zoom in and out on a scene by changing the field_of view variable.

Unlike some graphics animation packages, Hypercosm does not include a series
of canned animation commands like zm or flip. While these commands can be
useful when you first start to work with animations, sooner or later they limit
your creativity. Instead, Hypercosm animations require you to do somze
programming. You can produce effective animations with only a minimum of
programming, or you can make your animations as complex as you like, using
Hypercosm’s OMAR programming language. This approach, while initially a bit
harder to learn, ultimately yields animations that ate far richer than those
available with other packages.

Anims

Hypercosm animations make use of an OMAR procedure known as an anzm.
An anim is a section of code that generates a sequence of pictures. Inside an
anim is a looping statement that tells the computer to create pictures repeatedly.
Each picture differs slightly from the one before it (because you specify
different parameters or conditions). You can do this by using a for loop to
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create a fixed number of frames, or by using a While loop to create pictures
continuously while a certain condition is true.

An anim is just like a verb procedure except that it is allowed to call pictures.
The graphical procedures (anims, pictures, and shapes) may call the non-
graphical procedures (verbs and questions) but not vice versa. Note: an anim
cannot directly call a shape; in order to use a shape, an anim must call a picture
that calls that shape.

Double Buffering

If you are creating still pictures, you usually want to be able to watch the
computer draw the picture. Watching the computer draw lets you track the
progress of the rendering, and gives you some idea of how long it will take to
complete. It’s also convenient because if you see something you don’t like—
for example, an object that’s the wrong color—you can stop the rendering and
fix the problem instead of waiting for the image to be completed.

When you do real-time animation, however, the situation is different. You don’t
really want to see the computer draw each picture; you only want to see the
finished images. To make this possible, Hypercosm uses a technique called dowble

buffering.

Animation with the Hypercosm System 97



Double buffering means that there are two buffers to hold the images. One
buffer is for viewing and the other one is for drawing. The front buffer holds
the image that you see on the screen and always holds a completed image. The
back buffer is where the computer stores the image that it is busy drawing.
When the computer is finished rendering the image, it swaps the buffers so you
see the newly completed image.

Figure 6-1: The Double Buffer Variable & Default

boolean double_buffer is false;

Enable this process by setting the double_buffer vatiable to true. For very slow
animations, you may still wish to use single buffering so you can watch the
images being created.

Parameter-Based Animation

The parameters with which a shape is created define a particular instance of
that object. When objects are animated, the objects in the scene and/or the

relationship between objects in the scene must change for the images to change.
Therefore, the animation is the result of the changing parameters.

For example, you might model a car where the rotation of its wheels is a function
of a distance parameter that tells how far the car has moved. When the distance
parameter is changed, the wheels turn. To animate the car, you need a loop
that repeatedly calls a picture containing the car, and the picture must pass a
changing distance parameter to the car to make the wheels change from frame
to frame.

Another example is a time parameter that regulates the changes in the animation.
The animation is a simple loop incrementing the time parameter that is passed
to the picture. The picture defines where objects are in terms of the time
parameter. To make the animation run more slowly and smoothly, you make
the time parameter increase by smaller increments.
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Animation Examples

The following listings demonstrate some Hypercosm animations. The first one,
labeled Animating the Eye Location, produces a rotating goblet that moves
in and out

Listing 6-1: Animating the Eye [ ocation

do rotating_glass;
include "3d.ores";

shape goblet is

hyperboloid1 with
endl =<00.1>; end2 = <00 .6>;
radiusi = 1; radius2 = .2;

end;

hyperboloid1 with
endl =<00.6>; end2 = <00 3>;
radiusi = .2; radius2 = 1;

end;

hyperboloid1 with
endl =<00.7>; end2 = <00 3>;
radiusi = 0; radius2 = .9;

end;
>
fing with 2.
center = <0 0 3>; normal = <0 0 1>; E
inner_radius = .9; outer_radius = 1; g
end; // rim E
cylinder with

endl =<0 00>; end2 = <0 0.1>; radius = 1;
end; // base of goblet

disk with
center = <0 0 0>; normal = <0 0 1>; radius = 1;
end; // bottom of goblet
end; // goblet

picture glass_picture with
field_of_view = 35;
 lookat = <00 1.5>;
is
distant_light from <1 -3 2>;
goblet with color = light orange; end;
end; // glass_picture
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Listing 6-1: Animating the Eye Location (Continued)

anim rotating_glass with
_ double_buffer is on;
is
scalar angle = 0;
scalar x, y, z;

while true do
// eye rotates around glass in an ellipse
X = sin angle * 5;
y= gos angle * 10 + 5;
Z=15;

glass_picture with
eye = <Xy z>;
roll = angle;
end;

angle = itself + 5;
end;
end; // rotating_glass

The following animation shows a ringed planet like Saturn orbiting around a
sun, viewed from the point of view of another orbiting planet.

Listing 6-2: Orbiting Planet

do moving_solar_system;
include "3d.ores";

shape saturn is
sphere with color = aqua; end;
ring with
inner_radius = 1.5; outer_radius = 2;
normal = <.5-.3 1>; color = yellow;
end;
end; // saturn

picture solar_system

vector location1, location2, location3;
with

eye = location3;

lookat = locationd;

field_of_view = 100;

ambient = white * .1;

is
sphere with material is constant_color yellow; magnify by 2; move to location1; end; // star
point_light with brightness = 8; move to location1; end; // star light
saturn with move to location2; end; // planet

end; // solar_system
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Listing 6-2: Orbiting Planet (Continued)

anim moving_solar_system with
double_buffer is on;

is
vector v, acceleration;
scalar k = .05; // change this to adjust orbit speed
vector star_locationl = <-4 0 0>, star_velocityl = <0.05 0>;
vector star_location2 = <10 0 0>, star_velocity2 = <0 -.1 0>;
vector star_location3 = <3 -25 8>, star_velocity3 = <.2 0 0>;

while true do
/[ compute star and planet attraction to each other
v = star_location2 - star_location;
acceleration = v * (k / (v dot v));
star_velocityl = itself + (acceleration / 10);
star_velocity2 = itself - acceleration;

// compute third party's attraction to star
v = star_location3 - star_location;
acceleration = v * (k / (v dot v));
star_velocity3 = itself - acceleration;

star_locationl = itself + star_velocity1;
star_location2 = itself + star_velocity?2;
star_location3 = itself + star_velocity3;

y solar_system star_location1 star_location2 star_location3; // draw picture
end;
end; // moving_solar_system
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Mouse-Controlled Anims

The animations ctreated in the examples above play out like movies: every time
they are run they follow the exact same pattern. A more powerful and interesting
animation would allow the user to control it somehow. Using OMAR, you can
program into your animations a limitless range of interactivity.

The easiest way to turn a static 3D image into an interactive animation is to
use a zmouse-controlled anim. Most shapes or pictutes you define can simply be
‘plugged in’ to one of the mouse-controlled anims to enable three different
useful interactions. How you can control the interactions depends on how many
buttons your mouse has:

Table 6-1: Interactions Provided by Mouse-Controlled Anims

Interaction On a one-button On a two-button On a three-

mouse, hold mouse, hold button mouse,
down: down: hold down:

Spin—Rotates

the shape or mouse bution left mouse left mouse

picture about the button button

origin.

Pan—Pans the Control + mouse right mouse right mouse

camera around. button button button

Zoom—Moves | + Shift both iddl

the eye forward Control + Shift + oth mouse middle mouse
mouse button buttons buttons

and backwards.

With a two-button mouse, you can also use the controls specified for a one-
button mouse, and with a three-button mouse, you can also use the controls
specified for a one or two-button mouse. When using one-button controls, you
can use the Alt/Option key in place of the Control key.

Mouse-controlled anims automatically turn the double buffer on and also
implement the Hypercosm procedure called check_keys. This means that when
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using a mouse-controlled anim, pressing various special keys will change
rendering parameters:

Table 6-2: Special Keys When Using a Mouse-Controlled Anim

P changes render_mode to pointplot
w changes render_mode to wireframe
h changes render_mode to hidden_line
s changes render_mode to shaded

| changes edges to silhouette

o changes edges to object

a changes edges to all

f changes shading to face

v changes shading to vertex

3 turns on/off stereo view (sets stereo to 0 or 5)
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There are two basic mouse-controlled anims:

» mouse_controlled_shape takes a shape as its parameter. It also adds lighting
for you. The lighting source is stationary in wotld coordinates, even as

the shape is spun around.

» mouse_controlled_picture takes a picture as its patameter and has no added
lighting. If you want a lighted scene, you must add light yourself in your
picture definition. Added lighting sources will move with respect to the
objects in the picture, so the same side of objects will always be lit up.

Both mouse_controlled_shape and mouse_controlled_picture are defined in the file
anims.otes, which is not included automatically with 3d.ores, so in order to
use a mouse-controlled anim, you must include anims.ores in your OMAR file.
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The following two example listings demonstrate how to use mouse-controlled
anims.

Listing 6-3: Using mouse_controlled_shape

do interactive_ball;

include "3d.ores";

include "anims.ores"; //¥** "anims.ores" must be included to use a mouse-controlled anim. ***
shape ball is

sphere with color = orange; end;
end;

anim interactive_ball is // No need to set double_buffer: mouse_controlled_shape does it for you.
y mouse_controlled_shape ball;
end;

Listing 6-4: Using mouse_controlled_picture

do interactive_balls;

include "3d.ores"; _ _ .
include "anims.ores"; J/¥** "anims.ores" must be included to use a mouse-controlled anim. ***

shape ball is
sphere with color = orange; end;
end;

picture balls is
distant_light from <1 -2 1>;
ball;
ball with move to <2 -1 0>; end;
y ball with move to <-2 -1 0>; end;
end;

anim interactive_ballsis  // No need to set double_buffer: mouse_controlled_picture does it for you.
y mouse_controlled_picture balls;
end;

Modifiable Shapes & Pictures
If a shape or picture has parameters, that means that every time that shape or
picture is used, it may have a diffetent definition. For example, a sphere, which
has parameters such as center and radius, can be given a radius of any size when
it is used. We therefore call such shapes and pictures modifiable.

A mouse-controlled anim cannot accept a modifiable shape or picture as its
parameter because it needs something with a constant definition. In order to
use a mouse-controlled anim with a modifiable shape or picture, you need to
encapsulate the shape or picture inside another one that doesn’t take any param-
eters.
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Suppose you define a shape like this:

shape ball with // The use of with reveals that this shape takes parameters
/[ and is therefore modifiable.
scalar spin = 0;

is
sphere with
color = white;
rotate by spin around <10 0>;
end;
end;

You cannot then do the following:
mouse_controlled_shape ball; // causes error

because ball is modifiable. Similarly, you can't say:
mouse_controlled_shape sphere;

because sphere is modifiable (it takes parameters such as center and
radius). But, you ¢az put ball in a non-modifiable shape, and then use that:
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shape non_modifiable_ball is // note; no parameters
; ball with spin = 45;
end;

It's okay, then, to say:
mouse_controlled_shape non_modifiable_ball;
Or, you could put ball in a non-modifiable pictute:

picture non_modifiable_picture is /[ again: no parameters
ball;
distant_light from <1 -3 4>;

end;

and then say:

mouse_controlled_picture non_modifiable_picture;
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Customizing Mouse Controls

If you want to customize how your animations respond to a mouse, you need
procedures that can tell you where the cursor is and whether mouse buttons
are being pressed. The details of how the animation responds to the mouse are
then entirely up to you to program.

Hypercosm provides three different procedures for getting data from the mouse:
* get_mouse returns the location of the mouse cursor on the screen.
» mouse_down indicates whether a mouse button is pressed down or not.

 get_click returns information about individual mouse clicks.

The following sections describe these procedures in more detail.

Cursor Location

The question procedure, get_mouse, returns a vector that contains the location
of the mouse cursor relative to the center of the viewing window. The x-
component of the vector indicates the horizontal position of the cursor, and
the y-component indicates the vertical position. If the cursor is positioned over
the upper left corner of the viewing window, get_mouse returns <-1 1 0>. If
the cursor is positioned over the lower right corner, get_mouse returns <1 -1 0>.

Figure 6-2: The Cursor Location Procedure

vector question get_mouse;

The components of the vector may be extracted using the dot operator. The
third component of the vector is meaningless since most mice only have two
degrees of freedom. If you want the mouse location in other units, such as
relative to the screen dimensions or in the range of (0 to 1), then you can write
your own functions to convert the coordinates.

Cursor location can be used to adjust any number of scene attributes. You could
rotate a scene, change viewing parameters, or even change an object’s color. In
the example below, changing the cursor’s horizontal location rotates an object
about the Z-axis, and changing the cursor’s vertical location rotates it about the
X-axis.
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Listing 6-5: Using get_mouse to Rotate an Object

do thing_anim;
include "3d.ores";

shape thing is

block;
cylinder with endl = <-1.50 0>; end2 = <1.5 0 0>; radius = .5; end;
end; // thing
picture thing_picture with
. eye=<0-80>;
is
scalar x = get_mouse dot <10 0>; // horizontal mouse location
scalar y = get_mouse dot <0 1 0>; // vertical mouse location
distant_light from <1 -3 2>;
thing with
rotate by y * -180 around <1 0 0>; // use vertical location to rotate about X-axis
rotate by x * 180 around <0 0 1>; // use horizontal location to rotate about Z-axis
end

end; ’ // thing_picture

anim thing_anim with
_ double_buffer is on;
is
while true do thing_picture; end;
end; // thing_anim
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The Mouse Button

Another useful procedure is the mouse_down question, which takes a mouse
button number as its parameter, and then checks whether the corresponding
button is pressed. If the button is pressed, mouse_down answers true, otherwise

it answers false.

Figure 6-3: The Mouse Button Procedure

boolean question mouse_down
button integer number = 1;
end;

The button on a one-button mouse is button 1, which is the default button for
mouse_down. On a two or three-button mouse, the left button is button 1, and
the right button is button 3. On a three-button mouse, the middle button is

button 2.
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Table 6-3: Mouse Button Numbers for Different Mouse Types

Button One-Button Mouse Two-Button Mouse Three-Button
Number Mouse

1 mouse button left mouse button left mouse button

2 . . middle mouse
button

3 — right mouse button  right mouse button

If you're using a one ot two-button mouse, then mouse_down button 2 will
always answer false because no button 2 exists for your system.

Listing 6-6: Using get_mouse and mouse_down to Rotate and Move an Object

do thing_anim;

include "3d.ores";

shape thing is
block;
cylinder with
endl = <-1.500>;
end2 = <1.500>;
radius = .5;
end;
end; // thing

picture thing_picture
vector location, orientation;
with
~eye=<0-80>;
is
distant_light from <1 -3 2>;
thing with
rotate by (orientation dot <1 0 0>) around -<1 0 0>;
rotate by (orientation dot <0 0 1>) around <0 0 1>;
move to location;
end;
end; // thing_picture
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Listing 6-6: Using get_mouse and mouse_down to Rotate and Move an Object

anim thing_anim with

end; ' // thing_anim

double_buffer is on;

vector old_mouse, new_mouse, delta;
vector orientation = <0 0 0>, location = <0 0 0>;
scalar dx, dy;

old_mouse = get_mouse;
while true do
new_mouse = get_mouse;
delta = new_mouse - old_mouse;
old_mouse = new_mouse;
dx = delta dot <10 0>;
dy = delta dot <0 1 0>;

if mouse_down button 1 then
// if button number 1 is down, move object
location = location + <dx 0 dy> * 2;
else
// If button number 1 is not down rotate object
y orientation = orientation + <dy 0 dx> * 360;
end;

thing_picture location orientation;
end;

Mouse Clicks

The mouse_down procedure is useful for interactions that requite the user to
press and hold down a mouse button, as in the example listing above.
However, mouse_down is not very useful for interactions that requite the user
to click or double-click a mouse button.

This is because mouse_down only checks the wirrent state of the mouse. If the
animation frame rate is slow, then mouse_down might check the mouse too
infrequently and might miss a click. If the frame rate is very fast, then
mouse_down could check the mouse too frequently, and might report several
clicks when the user has actually only clicked once.

Another significant problem with mouse_down is that, because it only checks
the current mouse state, it can never tell you exactly when and where a mouse
button was pressed or released. If the example animation above was running
very slowly, you could drag your mouse across the graphics window very quickly,
and mouse_down might not detect that the mouse was pressed at all, ot, it might
detect that the button was pressed once, but the locations that get_mouse would
return would not accurately reflect the locations of where the mouse was actually
pressed.

Instead of using mouse_down to detect mouse clicks then, you should generally
use get_click, a procedure that lets you know accurately whether the mouse has
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been clicked or not, and also tells you where the click occurred and what kind
of click was made: a down click (pressing the button down), a double click
(pressing the button twice in quick succession), or an up click (letting the button
up after it has been pressed down).

Figure 6-4: The Mouse Click Type & Procedure

enum click is down, double_click, up;

click type question get_click
return with
integer button;
vector location;
boolean shift;
boolean alt;
boolean control;
boolean caps_lock;
end;

The Mouse-Event Queue
To understand how get_click wotks, and to be able to use it propetly, you should
first understand the concept of a mouse-event quene. Whenever the mouse is
clicked, the computer enters an event into its mouse-event queue. This gueue
works like a ticket line or a conveyor belt. New items are placed at the end,
and items at the front are serviced and removed.

To ‘service and remove’ an event from the mouse-event queue, you use the
get_click procedure. When get_click is called, it removes an event from the event
queue and returns various information about the event. The event that is
removed is always the o/dest event that has not yet been handled, because the
most recent event is always placed at the end of the queue.

For example, imagine you’re running an animation that calls get_click once per
frame. Between two calls to get_click, you double-click on the graphics window.
By double-clicking, you enter four events into the mouse-event queue: the initial
down click, the following up click, the second down click (which is tabbed as
a double click), and the final up click. The initial down click is the oldest of
the four events, and the final up click is the most recent.

The next call to get_click then answers down, because the oldest event in the
queue is your initial down click. Following calls to get_click answer up, then
double_click, then up again. Remaining calls to get_click, assuming you do not
click any more after your first double-click, all answer none because the queue
is empty.

Using get_click
The get_click procedure has a number of useful optional return parameters. The
button parameter indicates which mouse button was clicked. The location
parameter indicates where the cursor was when the click occurred, using the
same format as the get_mouse return value. The boolean parameters—shift, alt,
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control, and caps_lock—indicate which of the corresponding modifier keys were
pressed when the click occutred (with alt corresponding to the Option key on
Macintosh keyboards).

When you call get_click, you can use any combination of the return parameters,
and you needn’t use any at all if they aren’t needed. The syntax for using get_click
and its parameters is demonstrated in the following listing.

The listing produces a spinning metallic cylinder. You can change the color of
the ground below the cylinder by clicking on it, or change the sky’s color by
clicking on it. To change the cylinder’s color, press Shift and click anywhere.
You can also turn fog on and off by pressing Control while clicking.

Listing 6-7: Using get_click to Change Colors in a Scene

do color_picker;

include "3d.ores";

color type colors[0..18] = [(dark red) (dark green) (dark blue) red green blue yellow cyan magenta
black charcoal grey white sky_blue olive gold rust eggplant lavender];

picture color_scape is z
static integer sky_color = 13; // Default sky color is 13: sky blue. £l
static integer ground_color = 1; // Default ground color is 1: dark green. 2
static integer thing_color = 15; // Default cylinder color is 15: gold. 4
static integer t = 0; // This variable is the amount of the B

/[ cylinder's spin.

integer button;
vector click_loc;
boolean shift, ctrl;

// *** Syntax for using optional return parameters; ***

click type click is
(get_click return with
click_loc = location;
static shift is shift; ~ // "static shift" is the variable, "shift" is the parameter.
ctrlis control;); // Note: no end keyword because the procedure call is
/[ an expression, not a statement.

if click is down or click is double_click then

if ctrl then // If Control is pressed, toggle fog_factor.
if fog_factor = 0 then fog_factor = 150;
else fog_factor = 0;
end;

else
if shift then thing_color = (itself + 1) mod (num colors); // Change cylinder’s color.
elseif click_loc.y > 0 then sky_color = (itself + 1) mod (num colors);

// Change sky’s color.
elsccle ground_color = (itself + 1) mod (num colors); // Change ground’s color.
end;

end;
end;
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Listing 6-7: Using get_click to Change Colors in a Scene (Continued,

background = colors[sky_color]; /] Set the "sky's" color.
distant_light from <-1-2 3>,

sphere with

vmax = 0;

scale by .2 along <00 1>;

magnify by 100;

color = colors[ground_color]; // Set the ground’s color.
end; // ground

cylinder with

scale by 2 along <0 0 1>;

magnify by 5;

rotate by t around <01 0>;

material is metal colored colors[thing_color]; // Set the cylinder's metal color.
end; // spinning cylinder

t = itself + 2; /[ This increments the cylinder's spin.
end; // color_scape

anim color_picker with
double_buffer is on;
eye = <0 -50 0>;

is
while true do

color_scape;

end;

end; // color_picker

Customizing Keyboard Controls

You can also use the keyboard to control animations. The built-in I/O
procedure, read, is unsuitable for animations because it waits for the user to
enter data and then press Enter or Return. What you need instead is a keyboard
procedure that repozts the instantaneous state of the keyboard without waiting
for the Enter key. For this purpose, Hypercosm provides two keyboard proce-
dures, get_key and key_down, that function like the mouse procedures get_click
and mouse_down.

Figure 6-5: The Keyboard Procedures

integer question get_key
return with
boolean shift;
boolean alt;
boolean control;
end;

boolean question key_down
integer key;
end;
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Just as get_click provides information about events in the mouse-event queue,
get_key provides information about events in the keyboard-event queue. Each
time you strike a key on your keyboard, your computer takes note by entering
an event in the keyboard-event queue. When get_key is called, it temoves the
oldest event remaining in the queue and returns information about it. The integer
that get_key returns is the &eyode of the key that was struck. Keycodes ate
similar to mouse button numbers: there is a different keycode for each of the
buttons on the keyboard.

Listing 6-8: Program to Report the Keycode of Any Key That Is Struck

do get_keycodes;
include "3d.ores";

anim get_keycodes is
picture blank is
end;

while true do
integer k = get_key;

blank; // get_key requires an open graphics window.
if k <> 0 then // 1f some key was struck, then write the keycode.
write "keycode =", k, ;
end;
end;
end; // get_keycodes
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In addition to returning a keycode, get_key also has optional return parameters
that indicate whether a modifier key—Shift, Alt/Option, Control, or Caps
Lock—was pressed down when a key was struck. There is no caps_lock
patameter. Instead, the shift parameter is adjusted accordingly: if Caps Lock is
down and a letter key is struck, then shift will be true; otherwise, the Caps Lock
key has no effect.

The second keyboard procedure, key_down, works very much like mouse_down.
It takes a keycode as its parameter, and then checks whether the corresponding
key is pressed. If that key is pressed, key_down answers true, otherwise it answers
false.

Converting Between Characters and Keycodes

Since all computers have different keyboards, a certain key may have different
keycodes on different computers, or may not even exist on certain computers.
On a Macintosh, for example, the keycode for the A key is 0, whereas on a
UNIX machine, it is 97. If you were to use only your system’s keycodes to
refer to keys, then your programs would not be portable between different
makes of computers.
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To ensure that your OMAR code is portable, Hypercosm provides its own
intermediary keycode. You can use the procedutes key_to_char and char_to_key
to convert between characters and the Hypercosm keycode. Then, the
Hypercosm system can handle the conversion between the Hypercosm keycode
and system-dependent keycode internally. Thus, your OMAR code never has to
take into account system-dependent keycodes.

Figure 6-6: Character/Keycode Conversion Procedures

char question key_to_char
integer key;
with
boolean shift is false;
end;

integer question char_to_key
char ¢;
end;

The question char_to_key takes a character parameter and returns its keycode.
The question key_to_char takes a keycode and returns its corresponding
character. If you set its shift parameter to true, key_to_char returns the character
that corresponds to a shifted key.

Note that there are many special keys on a keyboard, such as F1 or Page Up,
that do not correspond to any printable character and cannot therefore be
converted to chars. For this teason, the conversion procedutes only wotk for
the letter, number, and symbol keys, and for certain special keys such as the
Space, Tab, and Enter keys. If you need to know the keycode of a special key
such as F1, then you can look in the resource file, keycode.ores, where you
can find the conversion procedure definitions together with documented
conversion tables.

Listing 6-9: Program to Report the Corresponding Character of Any Key That Is Struck

do write_chars;
include "3d.ores";

anim write_chars is
picture blank is end;

while true do
boolean shift;
integer k = (get_key return with static shift is shift;);
char cis (key_to_char k with shift is static shift;);

blank; // get_key requires an open graphics window.
if k <> 0 then /] 1f some key was struck, then write its corresponding character.
write "you typed ", ¢, ;
end;
end;
end; // write_chars
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The following example uses some advanced programming techniques to create
a robot that you can control with your keyboard and also manipulate using a
mouse-controlled anim.

Listing 6-10: A Keyboard-Controlled Robot

do interactive_robot;

include "3d.ores"; ‘ . .
include "anims.ores"; // "anims.ores" must be included to use a mouse-controlled anim.

shape robot with
_ scalar base_rotation = 0, arm1_angle = 0, arm2_angle = 0;
is
shape base is
cylinder with endl = <0 0 0>; end2 = <0 0 .1>; radius = 1; end;
cone with
endl = <00.1>; radiusi = 1;
end2 = <0 0.5>; radius2 = .4;
end;
sphere with
material is plastic colored white;
center = <0 0.5>; radius = .4;
end;
end; // base

shape arm
_ scalar angle;
is
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cylinder with end1 = <0 0 0>; end2 = <0 0 1>; radius = .1; end;
cylinder with endl = <-.2 0 1>; end2 = <.2 0 1>; radius = .2; end;
cylinder with

endl = <000>; end2 = <0 0 1>; radius = .1;
y rotate by angle around <1 0 0>; move to <0 0 1>;
end;
end; /[ arm

base with material is plastic colored red; end;

arm arm2_angle with
material is plastic colored blue;
move to <0 0 .4>;
rotate by arm1_angle around <1 0 0>;
rotate by base_rotation around <0 0 1>;
move to <0 0.5>;

end;

end; // robot

anim interactive_robot with
eye =<2 -64>;
lookat = <0 0 1>;

is
integer anglel_key = char_to_key "j"; //anglel rotates arm around base.
integer reverse_anglel_key = char_to_key "u";
integer angle2_key = char_to_key "k"; //angle2 raises arm up and down.
integer reverse_angle2_key = char_to_key "i";
integer angle3_key = char_to_key "I"; //angle3 bends ‘elbow.’

integer reverse_angle3_key = char_to_key "o";
scalar anglel = 60, angle2 = 10, angle3 = 30;
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Listing 6-10: A Keyboard-Controlled Robot (Continued)

verb check_robot_keys is
if key_down anglel_key then
anglel = anglel + 5;
elseif key_down reverse_anglel_key then
anglel = anglel - 5;
elseif key_down angle2_key then
angle2 = angle2 + 5;
elseif key_down reverse_angle2_key then
angle2 = angle2 - 5;
elseif key_down angle3_key then
angle3 = angle3 + 5;
elseif key_down reverse_angle3_key then
angle3 = angle3 - 5;
end;
end; /| check_robot_keys

picture scene is
distant_light from <-1-3 2>,
robot with
y base_rotation = anglel; arm1_angle = angle2; arm2_angle = angle3;
end;
end; /[ scene

// Now, the keyword doing can be used to run check_robot_keys
/[ while using a mouse-controlled anim.
mouse_controlled_picture scene doing check_robot_keys;

end; // interactive_robot

The Time Procedure

Use the question procedure, get_time, to attain the time from the system clock.
This may be useful to regulate the speed of real-time animations so that they
run consistently on different machines. The time question returns a vector that
contains the hours, minutes, and seconds as floating point values.

Figure 6-7: The Time Procedure

vector question get_time;

The resolution of the time question is system-dependent because the resolution
of system clocks differ. Usually it is accurate to 1/60 of a second.

Note that the hours, minutes and seconds are scalar (floating point) values. This
means that if it is 5:30 am, for example, the number of hours could be reported
as 5.5 hours. However, on some systems, the hours and minutes are reported
as integral values, and only the seconds are given fractional precision. This means
that if you were to use get_time to draw an animated real-time clock, the hour
and minute hands might move smoothly or in steps, depending on your system
and on your implementation. If you wanted to ensure that the hands move in
steps to make the clock ‘tick’, you would have to round or truncate fractional
values into integers.
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Listing 6-11: Time-Controlled Clock Animation

do clock_anim;

include "3d.ores"; . _ )
include "time.ores"; /] *¥** "time.ores" must be included to use the get_time procedure ***
include "anims.ores";

shape clock_face is
disk with normal = <0 1 0>; end;
cylinder with endl = <0 0 0>; end2 = <0 -.4 0>; radius = .05; end;

// hour marks:
for integer count = 1..12 do
block with
magnify by .1; scale by .5 along <0 0 1>;
move to <.8 0 0>;
rotate by count * 360 / 12 around <0 1 0>;
material is chalk colored grey;
end;
end;
end; // clock_face

shape clock with
_ vector time = <00 0>;
is
scalar hours = time.x, minutes = time.y, seconds = time.z;

// clock_body

torus with
inner_radius = .95; outer_radius = 1.2; normal = <0 1 0>;
material is golden;

end;

clock_face with material is plastic colored white; end;

/[ hands

triangle <-.1 00> <.1 00> <0 0 .6> with
rotate by hours / 12 * 360 around <0 1 0>; move to <0 -.2 0>;
color = magenta;

end; // hour hand

triangle <-.050 0> <.050 0> <0 0 .8> with
rotate by minutes / 60 * 360 around <0 1 0>; move to <0 -.25 0>;
color = blue;

end; // minute hand

triangle <-.025 0 0> <.025 0 0> <0 0 .6> with
rotate by seconds / 60 * 360 around <0 1 0>; move to <0 -.3 0>;
color = red;

end; // second hand

end; // clock
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picture clock_picture is
distant_light from <.3-1.5>;
clock with time = get_time; end;
end; /[ clock_picture

anim clock_anim with
o oeye=<1-41>;
is
mouse_controlled_picture clock_picture;
end; // clock_anim
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Aggregate Shape

An aggregate shape is a shape that is
defined by the user to be composed of
a number of primitive shapes or other
aggregate shapes. Primitive shapes are
the built-in shapes that are not user-
defined and can not be changed.

Aliasing

An artifact resulting from the fact that
images are represented by computers as
a grid of pixel values. Ideally, each pixel
value should represent the exact average
intensity of all of the colors that lie in
the pixel. However, computer graphics
typically only sample an image once per
pixel, so noticeable artifacts often occur.
Such artifacts are called aliasing.

One common artifact is a staircase
effect, often called the jagges, that is
noticeable along diagonal lines and
edges. Another artifact occurs when an
image has a repetitious pattern that is
finer than the grid of pixels that are used
to represent it. In this case, the discrete

Glossary

sampling at pixels causes large, obvious
patterns to be visible because of a spatial
resonance that occurs between the pixel
grid and the pattern in the image.

Ambient Light

Ambient light is the diffuse, scattered
light that comes from all directions and
illuminates shapes regardless of the
orientation or location of their surfaces.
Ambient light is the reason that surfaces
in shadow are not perfectly dark.
Surfaces receive light scattered by all
other they,
themselves, scatter light to contribute to

neatby  shapes and
the ambient lighting of other shapes.

Outer space is a setting where there is
very little ambient light because there
are few neatby shapes and no
atmosphere to scatter light. When you
look at the moon, the dark side often
appears completely black because the
only other substantial shape around to
scatter the sun’s light back to the moon

is the Earth.

Anaglyph
The anaglyph technique is used to
present stereo images by compositing
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two complimentary-colored images and
using colored filters over the eyes to
separate them. This technique was
popular in the movies of the 1950s. The
3D effect is achieved by presenting a
slightly different image to the right and
left eyes. Two grey-scale images are
tinted by two complimentary colors,
commonly blue and red, and then
combined so they overlap on the screen.
Then, the images are separated again
with colored glasses so each eye sees
just one of the images. This technique
does have drawbacks: it cannot present
3D images in full color, and differently-
colored filters tend to cause eyestrain.

Argument

In a mathematical sense, arguments are
the values passed into a function. For
example, in the function call, sin (50),
the argument of the function is 50. In
OMAR, arguments to procedures are
typically

arguments are the text commands passed

called  parameters.  Program

into a program from a command line or
HTML code.

Bump Mapping

Bump mapping is a technique that is
used to modify a surface’s properties in
such a way as to make it look bumpy.
Instead of actually
geometry of a surface, however, bump
perturbing the
effective normals of the surface. When

changing the
mapping works by

shading is calculated for the surface,
then, the perturbed normals are used to
calculate reflectance instead of actual
normals. This has the effect of making
a surface shade as if it were bumpy
without actually changing the shape of
the underlying object.

C

three-dimensional

Concave

A closed two or
shape has the property of being concave
if a line can pass through the shape and
intersect it in more than two points.
Concave shapes can be said to ‘curve in
on themselves” Any shape with an
indentation is concave. For example, a
two-dimensional ~moon  shape 1is
concave. A torus and a bowl shape are
concave shapes. Shapes that are not

concave ate, by definition, convex.

Convex

A convex shape is any closed two or
three- dimensional shape that never
curves in on itself or has any indenta-
tions. If a line passes through a convex
shape, then it will always intersect the
shape in exactly two points. Examples
of convex shapes are circles, spheres
and cubes. A mirror whose surface
bulges out slightly is called a convex
mirror. Shapes that are not convex are,
by definition, concave.

Coordinates

Coordinates ate a set of numbers that
uniquely specify a point’s location in
space relative to a certain frame of
reference. The frame of reference is
called the coordinate systemr and may be
thought of as a set of orthogonal axes
that come together at a point called the
origin. Bach  coordinate indicates the
distance between a particular point and
the origin along one of the axes. The
number of axes and the number of
coordinates
number of dimensions.

are determined by the
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Cross Product

The cross product is a mathematical
operation that is defined between two
three- dimensional vectors. The result is
a new vector that is perpendicular to
both of the other two vectors. The
length (magnitude) of the cross product
is equal to the product of the lengths of
the two operands times the sine of the
angle between them. The cross product
is sometimes called the vector product
because the result is a vector. The cross
product is calculated as follows:

vectorl: (abc)
vector2: (d e f)

vectorl cross vector2 = (ij k)

where

I—(bf) (ec)
j=(cd)- (a)
k=( e)- (bd)
Dot Product

The dot product is a mathematical
operation that is defined for two vectors
of any dimension. The result of a dot
product is always a scalar, so the dot
product is sometimes called the scalar
product. Geometrically, the length of
the dot product is equal to the product
of the magnitudes of the operands times
the cosine of the angle between them.
The dot product of a vector with itself
is therefore equal to square of its length.
To compute the dot product, you
compute the product of each
component of one vector and the corre-
sponding component of the other
vector and sum them all together. For
two three-dimensional vectors, you

compute the Dot Product as follows:

vectorl:

(Uq U9 ug)
vector2: 123

(Vv v3)

vector1 dot vector2 =
(ug *vy) + (up *vp) + (u3 *v3)

Double Buffer

Double buffering is a technique that
enables animations to be displayed as a
smoothly  changing  sequence of
completed images. Without the double
buffer, you would see each image in the
sequence as the computer is drawing it.
If the images take a noticeable amount
of time to draw, then you could watch
each image being created. If the images
can be rapidly drawn, then you would
see a flickering as the screen is cleared
and each new image is quickly created.

The double buffer technique eliminates
these distracting effects and enables you
to display only the finished image on the
screen. The image that you see on the
screen is actually held in a block of
memory known as the front buffer. While
you view the front buffer, the next
image in the sequence is assembled by
the computer in a second, hidden buffer
that is called the back buffer. When that
image is complete, the front and back
buffers are quickly swapped so that you
can see the new image in the front
buffer and you can clear the back buffer
for the next image.

Edge

An edge is the line that joins two
vertices together and the place where
two faces come together. All of the
edges of polygons and other faceted
primitives such as triangles and meshes
are defined to be straight lines in three-
space. If two shapes
intersect, then new edges will be formed
where they intersect. If your models are
all represented as faceted polyhedra,

dimensional
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then all edges will be straight lines and
therefore all of the silhouette edges and
intersection edges will also be straight
lines.
spheres and cylinders are used, then the

If unfaceted models such as
silhouette edges and intersection edges
will be curves. Whether the edges
appear as straight lines on the screen
depends upon the projection that is
used.

Extrusion

An extrusion is a shape that is created
by moving a two-dimensional shape
through a path in space. The three-
dimensional shape that results is known
as an extrusion after the fabrication
process where material is forced out
through a specially shaped hole in a die.
used to

Extrusions are commonly

produce 3D letters for logos.

F
Facet

Facets are polygonal faces that can be
used to represent the surfaces of shapes.
Curved surfaces can not be perfectly
represented by the flat facets but may
only be approximated. The reason that
facets are used to represent curved
surfaces is because the mathematics that
are used is simpler (linear equations) and
faster to solve than the mathematics for
perfectly curved surfaces.

Field Of View

The field of view is a measure of how
much of your surroundings you can see
at once. Usually, the field of view is
represented as an angle across your field
of vision. For example, the volume of
space that you can see with one eye
forms a cone extending out infinitely far
into space with your eye at the apex.

The field of view is the angle between
two opposite sides of the cone. In a
camera or computer graphic, the field
of view is usually more of a pyramid
shape, so the field of view is measured
as the angle between opposite edges of
the pyramid. The exact shape of the
viewing
projection that is used.

Flat Shading

Flat shading has two related meanings
in computer graphics that are often

region depends upon the

confused. The first meaning refers to a
rendering technique, also called face
shading, whereby the renderer depicts
surfaces as a collection of facets where
each facet is a constant color. The
second meaning has to do with the
lighting model that is used in the
shading calculations and means that a
diffuse, Lambertian lighting model is in
use, which gives the surfaces a dull,
chalky appearance.

Focal Point

The focal point is the precise location
light the outside
universe is brought together to a point

where the from
by a lens or mirror to form an image.
After coming together at the focal point,
the light diverges onto a recording
medium such as film in a camera or the
retina in the eye. The lens in the model
used by computer graphics is a point,
like in a pinhole camera, so the location
of the eye is effectively the focal point
of the lens.

Fractal

A fractal is a shape that has the property
of self-similarity, meaning that it reveals
the same general pattern at all scales.
The fractal shape contains tiny copies
of itself and those copies each contain
tinier copies of the same shape ad
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mnfinitum. If you magnify a portion of
the fractal, then you see the same shape
no matter how much magnification you
use. A famous example of fractals is the
Mandlebrot set, an exquisitely intricate
two-dimensional mathematical
Three-dimensional
fractals as well.

shape.

shapes can be

Global lllumination

Global illumination is a name for all
techniques that are used to compute the
appearance of a shape by looking at the
effects of its surroundings. There are a
number of ways that the environment
of a shape can change its appearance,
and all come under the topic of global
illumination.

One way is through reflection and
refraction. Shiny shapes that reflect their
surroundings and transparent shapes
that  transmit  light their
surroundings can be simulated by the

from

process of ray tracing. Another way that
affected by their
environment is by shapes illuminating

shapes can be
each other through diffuse reflection.

This process can be simulated in
computer graphics by a technique
known as radiosity. Global illumination
techniques are more costly and difficult
to implement because they must be able
to access any portion of the entire
database of the scene in order to

compute the shading on any surface.

Gouraud Shading

Gouraud shading, also known as serzex
shading, 1s a technique developed by
Henri Gouraud to render smoothly
shaded curved surfaces from a faceted
representation. Gouraud shading works

by blending the color smoothly across
the facets using a linear interpolation
between the edges of the facet. The
benefit of Gouraud shading is that the
shape has a smooth appearance instead
of a faceted appearance and it can still
be rendered quickly because the mathe-
matics for the surface is linear.

Unfortunately, the way that Gouraud
shading blends color doesn’t petfectly
match the way the color changes across
surfaces, so Gouraud
shading still causes visible artifacts. In
addition,
geometry is still faceted, the silhouette
their

actual curved

since undetlying  surface

edges of surfaces give away

polygonal representation.

Hierarchical Geometry
Hierarchical geometry in a graphical
database is the grouping of shapes into
aggtregate shapes. The hierarchy can be
imagined as a tree with the picture
object (the entire scene) as the root
shape and the primitive shapes at the
leaves.

Image Plane

The image plane is the surface that an
image is projected onto after light rays
are focused through a focal point by a
lens. The image plane is usually a flat
surface in 3D graphics, as in a real
camera where the image plane is the
surface of the film. In some systems,
however, the image plane is actually a
curved surface. In your eyes, for
instance, the image plane is the spherical
surface of the retina.
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Interpolation
Interpolation is a technique for

estimating what some intermediate
values are, given known values at nearby
points. Interpolation is used in Gouraud
which
shading precisely only at vertices and
between the

interpolating from the

(vertex) evaluates

shading,
estimates the colors
vertices by
known colors at the vertices. For
example, if the color is dark red at one
vertex and white at another, then it is
very likely that the color in between the
two vertices should be a
gradation from dark red to red to light
red to white.

smooth

Interpolation sometimes fails because
the thing that you are interpolating
rapidly and abruptly

points that you are

changes very
between the
sampling. For example, if the surface is
textured with a fine pattern, then
between the
vertices will not give you a good repre-

smoothing the color

sentation of the underlying pattern.

Jaggies

Jaggies are an antialiasing artifact that
occur frequently in computer graphics
because images of non-rectangular
shapes cannot be perfectly represented
by lighting up rectangular pixels in a
grid. For example, when a diagonal line
is drawn on a computer screen, the line
typically appears as a stair step pattern
of pixels. The little saw tooth edges of
the line are what are informally referred

to as the 9aggies’.

L
Lathe

A lathe is a shape created by rotating a
two-dimensional form around an axis of
rotation. The resulting three-dimen-
sional shape has a rotational symmetry
about its axis. This type of shape is
named after the machining process
whereby a piece of material is rapidly
turned while a cutting device is used to
remove material. Wooden dowels used
in furniture or porch railings are often
fabricated in this way.

Latitude

The latitude lines are the horizontal lines
that encircle a shape around its axis of
revolution. Latitude can be distinguished
from longitude by remembering that the
latitude lines lie flat. Latitude is defined
for a sphere as the angular distance
north or south from the Equator. The
north pole of the Earth is at 90 degrees
latitude and the south pole is at -90
degrees latitude. Since the north and
south poles are 90 degrees from the
equator, the latitude has a range of -90
to 90 degrees. If the latitude goes over
90 degrees or under -90 degrees, it
wraps around. For example, if you travel
more than 90 degrees north from the
equator, you start to get closer to the
equator again, so 100 degrees of latitude
wraps around to 80 degrees.

Lighting Model

A lighting model is a mathematical
formula that is used to predict how light
will interact with surfaces. Lighting
models attempt to describe the physics
that are involved in the interaction, but
often the physics are too complicated to
model precisely, so a number of simpli-

124 Glossary



fying assumptions are made to make the
lighting model manageable.

Line Of Sight

The line of sight is the direction in
which you are looking. Shapes that are
directly in the line of sight will appear
in the center of an image and shapes
that are at greater angles to the line of
sight will appear farther from the center
of the image. The line of sight is the
vector that is formed between the eye
point and the lookat point, which is
sometimes also called the center of vision.

Linear

Linear is a term that refers to anything
pertaining to a line. In a mathematical
sense, an equation is linear if its graph
is a line. Any equation is linear if it
consists only of terms that are of the
first degree. That means that none of
the independent
equation are raised to a power other

variables in  the

than one and there are no non-linear
functions involved such as sine or

cosine.

Local Coordinates

When you define an aggregate shape,
the subshapes are defined in the frame
of reference of the aggregate shape. This
frame of reference is described by the
When an
aggregate shape is moved around, all of

shape’s  local  coordinates.
the sub-shapes automatically follow the
aggtregate shape. This is a great help in
modeling complex scenes. Shapes can
be created by defining all of their parts
relative to the shape without worrying
about where the shape will eventually be
placed in the scene because when the
aggregate shape is moved, all of its parts
automatically follow.

Local Variable

A local variable is a variable that exists
only inside the scope of a particular
procedure. Local varables encourage
better, safer programming because if a
variables only live within a procedure,
you don’t need to worry about other
procedures inadvertently changing them.
Almost all variables in a typical proce-
dural language are local variables.

Longitude

Longitude lines are the vertical lines that
run perpendicular to the latitude lines
(assuming that the axis of rotation is
vertical). On a sphere, longitude is a
measure of how far around the globe
you have travelled. Since a globe is
rotationally symmetrical, you must
arbitrarily pick a location from which to
measure. By convention, on Earth, we
Greenwich, England.
Longitude may run from 0 to 360

degrees. Below O degrees or above 360

have chosen

degrees, it wraps around, so 400 degrees
of longitude is the same as 40 degtees
of longitude. Longitude lines may be
drawn on any shape that is rotationally
symmetrical, so all of the quadrics and
the torus may be sectioned into longi-
tudinal sweeps.

Mandlebrot Set

The Mandlebrot Set is a mathematical
entity that is known for its exquisite
beauty and complexity. The Mandlebrot
Set and related mathematical shapes are
known as fractals because they possess
the property of self-similarity. This
means that the shape has the same
structure at all scales. If you zoom into
the Mandlebrot Set, tiny Mandlebrot
Sets begin to appear which, upon closer
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inspection, have all of the intricate detail
of the original.

Mesh

A mesh is a general purpose primitive
that consists of a group of vertices,
edges, and faces that are usually, but not
necessarily connected into a surface.
Since any surface can be approximated
by a group of planar facets, the mesh
primitive is the most general-purpose
primitive.

Mirror Direction

The direction that a light ray will reflect
off of a surface is called the mzrror
direction.  'The
computed by reversing the component

mirror direction  1is

of the direction vector of the light beam
that is perpendicular to the surface.

N
Normal

A normal is a vector that is perpen-

dicular to a sutface. The normal can be
thought of as an arrow that always
When
surfaces are shaded by the computer,

points out from a surface.
their normals are used to determine how
light reflects off of them. Computer
graphics techniques such as bump
mapping and Phong shading actually
perturb the normals of surfaces during
the shading process to make flat

surfaces appear bumpy or round.

Orthogonal

If two lines or vectors are orthogonal,
then they are perpendicular, or set at a
right angle to each other. This term is
linked

instance, which means that the direction

closely to orthographic, for

of sight is always perpendicular to the
film plane. Since the rays never diverge,
there is no perspective effect where
shapes get smaller as they recede into
the distance.

P
Parallel

Parallel means extending in the same
direction without ever converging. If
two vectors are parallel, then the angle
between their directions equals 0. This
leads to a test for parallel vectors. If two
vectors are parallel, then their dot
product equals the product of their
lengths. This works because the dot
product equals the product of the
lengths of two vectors times the cosine
of the angle between them and if the
angle equals zero, then the cosine equals
one. Similarly, if two planes are parallel,
then their normals are also parallel,
otherwise, the planes must intersect.

Perpendicular

Perpendicular means that two things are
at right angles to each other. If two
vectors are orthogonal, then you can
check this by testing if their dot product
equals zero. Since the dot product
between two vectors equals the product
of the lengths times the cosine of the
angle between them, it must equal zero
when the angle is ninety degrees because
the cosine of ninety degrees is zero. If
two planes are orthogonal, then their
normal vectors are also orthogonal. If a
vector is orthogonal to a plane, then the
normal to the plane is parallel to the
vector.

Perspective
Perspective is a geometrical effect that
occurs when you project a three-dimen-
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sional scene onto a two-dimensional
surface. The result of perspective is that
shapes appear to become smaller as they
move farther away from you. Your field
of view encompasses all shapes within
a certain viewing region called the viewing
Sfrustum. The viewing frustum is usually
shaped like a cone or pyramid with the
eye at the apex. Any cross section of
the viewing frustum will exactly fill the
field of view. Since the cross section of
the viewing frustum gets larger and
larger farther away from the eye and the
actual size of a shape never changes, a
shape gets smaller and smaller in
relation to the cross section of the
viewing frustum as it moves further
away from the eye. This means that the
projection of the shape gets increasingly
small as the shape moves away from the
eye.

Phong Shading

Phong shading, also called pixe/ shading,
is a technique that was developed by
Bui-Tong Phong as an improvement
upon Gouraud shading. It is similar to
Gouraud shading because it uses a
faceted polygonal representation of the

model. To achieve mote accurate
shading  computations, instead of
smoothing the color across the

polygons, Phong shading smooths the
normals across the surface and applies
the lighting model to each pixel with the
interpolated normal to achieve the effect
of a smooth surface. The cost of more
accurate shading is a much slower
rendering algorithm since the shading
calculations must be performed at every
pixel.

Photorealistic
The term photorealistic came into vogue
in the 1980s when computer graphics
to be realistic

began enough to

masquerade as photographs of the real
wortld. As the technology improves, the
qualifications for being considered
photorealistic continue to become more
stringent. The most realistic computer
graphics require a trained and discerning

eye to distinguish them from reality.

Pitch

Pitch, in photography and computer
graphics, is the amount that your camera
is tilted up or down in the frame of
reference of the camera. You can think
of pitch as the way that your head
rotates when you nod or the way that
an airplane rotates when it climbs or
The axis
horizontal, left to right vector in the

dives. of rotation 1is the

frame of reference of the camera.

Pixel

Since computers are digital machines,
they cannot manipulate or represent any
forms of continuous data but must
instead
quantized, discrete

represent everything in a
form. For this
reason, all forms of digital manipulation,
including television and video, process
images by breaking them up into a
rectangular array of tiny, colored squares
called pixels. If you look closely at a
computer monitor or a television screen,
you will see that the images are not
smooth, continuous forms, but are in
fact composed of tiny squares. Since a
digital computer must represent all data
as discrete units instead of continuous
ranges of values, the color of the pixels

may look continuous but is also
quantized into a number of discrete
levels.

Polygon

A polygon is a two-dimensional shape
that is bounded by edges that are
straight lines. A polygon must have
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three or more sides. A triangle is a
polygon with three sides. Polygons may
be any shape that can be formed from
straight lines and may be either convex
or concave.

Primitive

A primitive, in a computer graphics
system, is an atomic, immutable entity
that is built into the system and can not
be changed. Other things may be user-
defined, such as procedures, shapes, and
user-defined data types. These are non-

| Q
Quadric

A quadric is a mathematical classifi-

primitive entities.

cation for a family of shapes that have
similar mathematical properties. One
property of quadrics is that they may
only intersect a line in two places or less,
hence they are also called second-degree
shapes. The set of quadrics includes the
sphere, cylinder, cone, paraboloid, one-
sheet hyperboloid, and two-sheet hyper-
boloid. These shapes are similar because
they are all derived from conic sections,
which are the types of curves that are
produced by slicing a cone in a variety
of ways. Mathematically speaking, conic
shapes can all be described by the
second-degree quadratic equation: ax?® +
bx + c.

Quantization

You say that something is quantized if
it can only take certain discrete values
or states. Since computers are digital
machines, absolutely everything that the
computer can represent must be
quantized. For example, if you draw a
spectrtum or a smoothly shaded image

with a computer, it looks like the color

changes smoothly over the entire range.
In fact, the image is represented by a
fixed set of intensity levels (usually from
0 to 255). Since the intensity levels are
very close together, the intensity appears
to be continuously changing instead of
having a number of discrete, fixed
levels.

Quartic

A quartic is a mathematical classification
for a family of shapes that have similar
mathematical properties. The only well
known quartic shape is the torus.
Quartic shapes have the property that
they may only intersect a line in four
places or less, hence they are called
fourth-degree shapes. Mathematically
speaking, these shapes
described by the fourth-degree quartic
equation: axt + b + o +dx + e

R

can all be

Radiosity
Radiosity is a technique for computing
ambient light more accurately by

computing the inter-reflections between

surfaces. Hypercosm does not

implement the radiosity technique.
Instead of trying to compute the exact
amount of ambient light, a simple

constant value 1s used to estimate it.

Real-Time

The term, realtime, 1s used when a
computer can run a process steadily
while still responding almost instantly to
changes in input. The fuzzy part of this
definition is in just how fast ‘almost
instantly’ really is. In most cases, if the
computer can respond within between
1/30 of a second and about 1 second,
then it is considered to have a real-time
real-time

response. In some cases,
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response is more necessary than in
others. A video game must have a quick
response or else it has a sluggish feel to
it and is no fun to play. An animation,
such as an architectural fly-through,
does not require such an immediate
response, so it may be acceptable to
update the picture every second or so
and still be considered a real-time appli-
cation.

Rendering

Rendering is the general process of
producing an image. A rendering (as in
an architectural rendering) is usually
intended  to depict
something else, either real or imaginary.

simulate  or

A random collection of lines, for
example, would not be a rendering
because it doesn’t depict anything,
although it is still an image. In computer
graphics, rendering refers specifically to
the process of drawing an image to
screen.

Roll

Roll is the amount that a camera is tilted
around its line of sight. You can think
of roll as the way that your head rotates
when you tilt it from side to side.

S
Scalar

A scalar is any number with or without
a fractional part. In mathematics, these
are known as real numbers. Real
numbers include the set of integers, or
whole numbers; rational numbers,
which can always be expressed as a ratio
of whole numbers; and transcendental
numbers such as Tt or e, which can not
be written as finite expressions of whole

numbets.

Shader

A shader is a procedure that is executed
to compute the apparent color of a
surface under a certain set of lighting
conditions. In most systems, the shaders
are built in to the program and can not
be changed by the user.

Silhouette

The silhouette is the apparent edge of a
shape from the point of view of an
observer. As the
relative to the shape, the silhouette
changes. The silhouette marks the place

obsetver moves

on the shape where the surface changes
from visible to hidden and vice versa.

SMPL
The programming language that was
later called SAGE, and is now OMAR.

Specular

The wortd specular is an old word that
means mirror-like. Many surface types
have a specular quality to them, such as
metals and plastics. Specular materials
characteristically have very smooth
outer surfaces that enable them to
reflect their surrounding and have very
sharp, concentrated highlights. An
example of a non-specular material is
chalk, which reflects light in a very

diffuse way.

Texture Mapping

Texture mapping is a technique that is
used to modulate the color of a surface.
The term is somewhat misleading
because texture mapping is typically
used to change the color of the surface
but doesn’t actually impart a texture to
the surface, like making the surface look

bumpy or ridged. To do this, a similar
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technique, called bump mapping, is used.
In texture mapping, the color is usually
modulated by taking the color from a
two-dimensional image that is mapped
onto the surface in some way. This is
sometimes called zwage mapping. Alterna-
tively, the color for the surface can be
computed using a  mathematical
function or an algorithm for computing
the color. This is known as procedural
texcture mapping. Image mapping can be
implemented in the Hypercosm system
by using textured materials. Both forms
of texture mapping can be implemented
in the Hypercosm system by using
shaders.

Transformation

A transformation is a way of modifying
the location, orientation, or scaling of a
shape. The
mented by the Hypercosm system are

transformations  imple-
known as linear transformations because
any straight lines in the shapes remain
straight after any transformations are
performed on the shape.

To imagine how transformations work,
think of a piece of rubber graph paper
with a picture on it. To perform linear
transformations on the picture, you may
stretch, move, or rotate the graph paper
in any way so long as the lines in the
graph paper remain straight and equally
spaced. The distance between horizontal
lines need not be equal to the distance
between the vertical lines, but all the
horizontal lines and vertical lines must
be consistently spaced. Note that the
lines may even be skewed so that they
are no longer perpendicular and still
satisfy the criteria.

V
Vertex

A vertex is a point where two edges
meet. Primitives that are defined by
vertices atre triangles, polygons and
meshes.

Voxel

The word voxe/ is shott for volume element.
A voxel i1s a box that encompasses a
volume of space. Voxels are used inter-
nally in the program to speed up the ray
tracing process. Hypercosm displays the
voxels when ray tracing is used and the
double buffer mode is not enabled.

World Coordinates

World coordinates are the coordinates

of the picture or scene. All of the shapes
in the picture must be defined in terms
of this coordinate frame. If all shapes
were defined in terms of world coordi-
nates, moving complex shapes around
would be difficult because it would be
necessary to change the world coordi-
nates of each and every part of the
shape individually. This is why aggregate
shapes are used. When aggregate shapes
are used, the sub-shapes may be defined
in the local coordinates of the aggregate
shape and when the aggregate shape is
moved, all of the sub shapes move
together as a group.

Y
Yaw

Yaw is the amount that your camera is
tited horizontally in the frame of
reference of the camera. You can think
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of yaw as the way that your head rotates
when you turn your head from side to
side. The axis of rotation is the vertical,
up-and-down vector in the frame of
reference of the camera.

Z-bufter

The z-buffer algorithm is used to
eliminate hidden surfaces in the shaded
and hidden line rendering modes. It

works as a kind of 3D painting

algorithm. As you draw the shapes, you
check the depth of the shape at each
pixel with a depth value of the closest
point in current scene at that pixel. A
depth value for each pixel on the screen
is stored in a big array that is called the
z-buffer, or depth-buffer. If the new
surface is closer than any surfaces that
have been previously drawn, then the
color of that surface 1s wtitten into the
image and the depth of the surface at
that pixel is written into the z buffer.

Glossary 131



132 Glossary



3

3D coordinates 10
3d.ores 13

Index

antialiasing 87
antialiasing variable 87
args type 8

argument 120

aspect_ratio variable 75

A

absolute transformations 45, 47
implementation 45

actors 8

aggregate object 119

aliasing 119

all edges 79

ambient light 34 119

ambient variable 34

anaglyph 69, 119

animation
high-quality 96
parameter based 98
real-time 96
replaying 116
saving 116
speed 96

anims 10, 13, 97
mouse_controlled_picture 103
mouse_controlled_shape 103
mouse-controlled 102

anims.ores 103

B

background color 75
background variable 75, 92
blob primitive 17, 24
block primitive 17, 23
bump mapping 120

C

C programming language 2
C++ programming language 5
camera
otientation 62
placement 12, 61
capping 17
chalk material 50
char_to_key procedure 114
check_keys procedure 102
click type 110
closest-point detection 8
collision detection 8
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colot variable 48
colors 48
assigning 48
background 75
precedence 51
predefined 49
comments 13
compiler 2
compiling 2
concave 120
cone primitive 16, 19

constant_color material 50

convex 120

coordinates 10, 120

cross product 121

cutrent transformation state 43
cursor location 106

cursor style 8
cylinder primitive 16, 19

D

dark procedure 49
declarations 13

deferred texturing 53
dimensions transformation 47
direct transformation 41

disk primitive 16, 21

distant light 34 35

dot product 121

double buffer 97, 121
double_buffer variable 98

E

edge 121
edge_mode 78
edges 78

all 79

outline 80

silhouette 79
edges type 78
edges variable 78
extrusions 9, 122
eye variable 12,62

F

face shading 84 122
facet 122
facets variable 81
featute abstraction 86
field of view 63, 122
field_of view variable 63
finish_loading method 53
fisheye projection 67
flat shading 84 122
focal point 122
fog 92
fog_factor variable 92
FORTRAN programming language 2
fractals 122
implementing 57
in nature 56
frame rates 95

G

geometric primitives 16
get_click procedure 110
get_key procedure 112
get_mouse procedure 106
get_time procedure 116
global illumination 123
Gouraud shading 85,123

H

h_center vatiable 74

header statement 12

height variable 73

hidden line rendering mode 77
hierarchical geometry 5, 123
hierarchical modeling 36

hulls 9

hyperboloid1 primitive 16, 20
hyperboloid2 primitive 16, 20
Hypercosm 3D Player 4
Hypercosm Sojourner 2,7
Hypercosm Studio 2, 7
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image plane 123
image type 53
include statements 13
infinite plane 17
interpolation 124
interpreter 2, 3

jaggies 87,124

Java 2
Java programming language 5

K

key_down procedure 112
key_to_char procedure 114
keyboard procedures 112
converting between chars & key-
codes 113
keyboard-event queue 113
keycodes 113

L

lathes 9, 124
latitude 26, 124
lattices 9
left_color variable 71
light
distant 34, 35
point 34, 35
spot 34, 35
light procedure 49
lighting 33
ambient 34
model 124
primitives 33,35
limit transformation 47
line of sight 125

linear 125
linear scanning 83

lines primitive 17,25
local coordinates 125
local variable 125
longitude 26, 28, 125
lookat variable 62, 70

M

magnify transformation 39
Mandlebrot Set 125
materials 50

assigning 50
mesh 126
mesh primitive 17,24, 28
metal material 50
method

finish_loading 53

texture status 53
min_feature_size variable 86
mitror direction 126
modeling 15

hierarchical 36

procedural 55
mouse

button 107

clicks 109

cursor location 106

setting cursor style 8
mouse procedures 106
mouse_controlled_picture anim 103
mouse_controlled_shape anim 103
mouse_down procedure 107
mouse-controlled anims 102
mouse-event queue 110
move transformation 39

N

native declarations 9
nesting
transformations 43
noise function 9
non-planar primitives 17, 24
non-surface primitives 17,25

normals 126
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otientation of 31

O

OMAR 1 2,5
OMAR files 8,9, 12
basic requirements 12
resource files 8, 13
sample source files 9
source files 8,9
types of 8
ordered scanning 83
ores files 8
orient transformation 41
origin 10,11
orthogonal 126
orthographic projection 64
outline edges 80

P

painted keyword 53
panoramic projection 68
paraboloid primitive 16, 20
parallel 126
parallelogram primitive 16, 22
parametric procedural models 55
partial surfaces 26
Pascal programming language 2
perpendicular 126
perspective 126
perspective projection 65
Phong shading 85, 127
photorealistic 127
pictures 10, 13

declaring 13

saving 7D
pipes 9
pitch 127
pitch variable 63
pixel 127
pixel shading 85, 127
planar primitives 16, 21, 22
plane primitive 16, 21
plastic material 50

point clouds 9
point light 34, 35
pointplot rendering mode 75
points primitive 17,25
polygon 127
polygon primitive 16, 22
poster keyword 51
precedence
of colors 51
predefined colors 49
primitive 128
blob 17, 24
block 17,23
cone 16, 19
cylinder 16, 19
disk 16, 21
hyperboloid1 16, 20
hyperboloid2 16, 20
lines 17, 25
mesh 17, 24, 28
paraboloid 16, 20
parallelogram 16, 22
plane 16,21
points 17,25
polygon 16, 22
ring 16, 21
shaded polygon 17, 24, 31
shaded triangle 17,23,31
sphere 16, 19
torus 17, 23
triangle 16, 22
volume 17, 25, 32
primitive shapes 16
primitives 16
lighting 33, 35
non-planar 17,24
non-surface 17,25
planar 16, 21, 22
quadric 16, 19
procedural modeling 55
procedure
char_to_key 114
check_keys 102
finish_loading 53
get_click 110
get_key 112
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get_mouse 106
get_time 116
key_down 112
key_to_char 114
mouse_down 107
screen_height 74
screen_width 74
set_cutsor 8
program arguments 8
projection
fisheye 67
orthographic 64
panoramic 68
perspective 65
projection type 64
projection variable 64
pyramids 9

quadric 128

quadric primitives 19
quadrics 16
quantization 128
quartic 128

queve 110, 113

R

radiosity 128

random function 9
random scanning 83
ray tracing 82

ray tracing, coarse 86
real-time 128
real-time animation 96
reflections 90
reflections variable 90
refractions 90
refractions variable 90

relative transformations 37, 39

render_mode type 79

render_mode variable 75

rendering 15, 73,129
rendering mode 79

hidden line 77
pointplot 75
shaded 77
shaded line 78
witeframe 76
resource files 8, 13
right_color variable 71
ring primitive 16,21
roll 129
roll variable 63
rotate transformation 39

S

SAGE 129
saving pictures /D
scalar 129
scale transformation 40
scanning 82

linear 83

ordered 83

random 83
scanning type 82
scanning variable 82
scene 15
screen dimensions /4
screen_height procedure 74
screen_width procedure 74
set_cursor procedure 8
shaded line rendering mode 78
shaded polygon primitive 17, 24, 31
shaded rendering mode 77
shaded triangle primitive 17,23,31
shaders 8, 10, 129
shading 83

face 84

pixel 85

vertex 84
shading type 84
shading variable 84
shadows 90
shadows variable 90
shapes 10

primitives 16
silhouette 129
silhouette edges 79
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size transformation 47
skew transformation 40
slant transformation 41
sMmpL 129
Sojourner 2, 7
sounds 8
specular 129
sphere primitive 16,19
spot light 34, 35
stack
transformation 43
status
texture method 53
stereo glasses 70
stereo pairs 71
steteo variable 70
stereoscopic pictures 69
changing stereo colors 71
stretch transformation 40
Studio 7
subject
texture 53
supersampling 88
supersampling variable 88
surfaces
of revolution 16
partial 26
sweeps 26

T

tessellation 80
texture mapping 129
texture type 53
finish_loading method 53
status method 53
texture_status type D3
textured keyword 53
textures 1
deferred texturing 53
time procedure 116
torus primitive 17, 23
transformation
absolute 47
dimensions 47
direct 41

limit 47

magnify 39

move 39

nesting 43

otient 41

rotate 39

scale 40

size 47

skew 40

slant 41

stretch 40
transformation stack 43
transformation state 43
transformations 130

absolute 45

mixing relative and absolute 45

relative 37, 39

transforming a series of objects 43

triangle primitive 16, 22
turbulence function 9
type
click 110
edges 78
image 53
projection 64
render_mode 75
scanning 82
shading 84
texture 53
texture_status D3

U

umax parameter 26
umin parameter 26

units 12

utl, setting 8

V

v_center variable 74
variable
antialiasing 87
aspect_ratio 9
background 75,92
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color 48 vmin paramter 26

double_buffer 98 volume primitive 17, 25, 32
edges 78 voxels 83, 130

eye 62

facets 81

field_of_view 63 \AY

fog factor 92

web utilities 8

h_center 74 A 4

height 73 width variable 73

left color 71 window dimensions 73
looiat 62 70 window position 74

wireframe rendering mode 76
world coordinates 130

min_feature_size 86

pitch 63
projection 64
reflections 90
refractions 90 X
render_mode 79 Neaxis 11
right_color 71
roll 63
scanning 82 Y
shading 84
shadows 90 yaw 130
stereo 70 yaw variable 63
supersampling 88 Y-axis 11
v_center (4
width 73
yaw 63 Z
vertex 130 7 axis 11
vertex shading 84,123 7 buffer 131

vmax parameter 26
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