HYPERCOSM LLC

WWW. HYPERCOSM.COM

HYPERCOSM STUI

TRAINING COURSE

m
FTTIN
V7T N

m
m
o)
(@]
o
w
Z
-
-
@]

HLLY
N
T
@]
C
bl
m
bl
QO
bl
<
m

f

\DISON, WI

4

IR ST
N

. ||||ﬂ
<
T
<
o
rm
7~
@]
O
92
<
@]
O
<

o
(an
wn
—
N
o
(=]
<o

HYPERCOSM STUDIO TRAINING COURSE NOTES

TABLE OF CONTENTS

LESSON 1: HYPERCOSM OVERVIEW
LESSON 2: RUNNING HYPERCOSM
APPLETS

LESSON 3: HYPERCOSM STUDIO

INTRODUCTION

LESSON 4: HYPERCOSM STUDIO
PROJECTS
LESSON 5: BUILDING HYPERCOSM

WEB PAGES

LESSON 6: INTRODUCTION TO THE
OMAR LANGUAGE

LESSON 7: VARIABLES AND DATA
TYPES
LESSON 8: SIMPLE STATEMENTS

COPYRIGHT®©2006 5 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 9: PROCEDURES AND
FUNCTIONS

LESSON 10: SIMPLE GRAPHICS
PROGRAMMING

LESSON 11: 3D MODELING IN OMAR

LESSON 12: SIMPLE ANIMATION

LESSON 13: INPUT — THE KEYBOARD
AND MOUSE

LESSON 14: PICKING — MAKING
OBJECTS TOUCHABLE

LESSON 15: SOUND — ADDING SOUND
EFFECTS TO SIMULATIONS

LESSON 16: TEXT — 2D OVERLAY TEXT
AND 3D RENDERABLE TEXT

LESSON 17: OVERLAY GRAPHICS

LESSON 18: INTRODUCTION TO
OBJECT ORIENTED
PROGRAMMING

COPYRIGHT®©2006 6 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 19: INTERMEDIATE OBJECT
ORIENTED PROGRAMMING

LESSON 20: OBJECT ORIENTED
ANIMATION

LESSON 21: INTEGRATING WITH
JAVASCRIPT

LESSON 22: EXTERNAL DATA FILES

COPYRIGHT®©2006 7 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 1:

HYPERCOSM OVERVIEW

LESSON OBJECTIVES:

= Learn the advantages of using the Hypercosm system for creating
and displaying 3D content

= Understand the range of 3D tools available to you from
Hypercosm.

= Understand how Hypercosm compares with other media types
that are currently available (Java, video, Flash, Macromedia, etc.)

LESSON CONTENTS:

= What Is Hypercosm

= Hypercosm System Benefits

= Hypercosm System Components

= Hypercosm Content Creation Workflow

= Hypercosm File Types

COPYRIGHT®©2006 9 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

WHAT IS HYPERCOSM?

The Hypercosm system is a system for creating and deploying interactive 3D
simulations. These simulations can be used for a variety of applications including
training, scientific visualization, and education.

THE SPECTRUM OF 3D CREATION TOOLS

The Hypercosm system fills a gap which exists between visual graphical content
creation programs (such as 3ds Max™) which are relatively easy to use but don’t allow
behavior and interactivity to be specified and graphics libraries (such as OpenGL) which
can be very powerful but require extensive programming skills to use.

CATEGORY 1: CAD SOFTWARE

There currently are a fairly wide variety of 3D computer aided design (CAD) packages
available that allow to you create a wide variety of 3D models. However, these 3D
models are static and don’t have any animation or behavior associated with them. They
are like 3D paperweights.

Examples:
= AutoCAD™, SolidWorks™, ProE™, Catia™
Benefits:
* Graphical 3D modeling
* Tools are relatively mature and standardized
Disadvantages:
* No animation, interactivity, or simulation capabilities
» Useful for design, but not so useful for training, education, or communication

CATEGORY 2: 3D MODELING AND ANIMATION
SOFTWARE

3D modeling and animation packages allow you to created 3D models and also to
specify complex animation. These packages also typically allow you to define complex
rendering and surface attributes that make these models highly realistic. Although
these software packages allow you to define complex animation, to share the animated
graphics with others it must be rendered out to video. This eliminates the ability to
interact with the 3D models, which is one of the strongest benefits of 3D graphics.

COPYRIGHT®©2006 10 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

Examples:

* Alias Maya™, Autodesk’s 3ds Max™, NewTek’s Lightwave™
Benefits:

* 3D animation

» Allow definition of realistic surface attributes and materials
Disadvantages:

* No interactivity or simulation capabilities

* Output is video - files are huge, unwieldy to send electronically

CATEGORY 3: 3D GRAPHICS AND SIMULATION APIS

Graphics libraries or higher level “scene graph” libraries allow you to write programs to
bring your shapes and objects to life, but the programming must be done in a very
tedious and low level language such as C. This makes programming 3d graphics
unattainable to all but experienced professionals and impractical for most applications
because it would take too much work even for a pro to be worth the effort.

Examples:

* OpenGL™, Direct3D™, Open Inventor™, Multigen-Paradigm™, GL Studio™
Benefits:

* True 3D simulation

* Unlimited interactivity
Disadvantages:

* Content creation is difficult, time consuming, and expensive

* Output is executable programs, which are not well suited for distributing over

the web for reasons related to security and file size

CATEGORY 4: HYPERCOSM RAPID 3D APPLICATION
DEVELOPMENT SYSTEM

At the core of Hypercosm is a set of sophisticated rendering software that is controlled
by the user through a simple interpreted graphics language. This high level scripting
language shields the user from having to deal with the complexities associated with the
graphics and also makes it possible to safely distribute the simulations over the Internet.
This system makes it possible to create simulations that have all of the complex behavior
and interactivity of the 3D graphics and simulation APIs, but in a form that is practical
to create and deploy. Probably the most similar software to Hypercosm which
currently exists is VRML 2.0. VRML 1.0 is a static scene description language with no
animation or dynamic abilities. VRML 2.0 has added the ability to create dynamic
content but through an external scripting language. Hypercosm has integrated these two
functions into one system.

COPYRIGHT®©2006 11 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

HYPERCOSM SYSTEM BENEFITS

The Hypercosm system allows you to publish 3D content just like you would publish
other multi media content such as images, video or sound. Hypercosm content is a
powerful web-based medium for interactive online communication of 3D visual
information that can be viewed by a wide audience. The Hypercosm system uses a
unique technique for building and deploying 3D simulation based content that has the
following specific benefits.

BENEFITS FOR CONTENT CREATION

* Interactivity
Rather than viewing static images, the viewer can navigate through a 3D scene
interactively and gain a much better understanding of the content.

* Flexibility
The real world is complex. Hypercosm’s powerful scripting language makes it
possible to create 3D simulations that not just look like the real thing, but also act
like the real thing. With Hypercosm, you can add unlimited interactivity to your
3D scenes.

* Rapid Application Development
Using a high-level script language that has been designed for 3D simulation
allows complex content to be created much faster than conventional techniques
(e.g. using low-level system programming languages such as C or C++).

BENEFITS FOR CONTENT DISTRIBUTION

* Low File Size
Hypercosm’s patented approach to encoding 3D content results in low file sizes
can be delivered over the web in a practical and effective manner.

» Safety / Security
Because the script code that drives Hypercosm applets is interpreted, it is
inherently safe. You can run Hypercosm applets without any fears that they may
contain viruses, worms, or other malicious content.

* Encryption

Models and animations are compressed and encrypted into a form that is safe to
post on a website and cannot be changed or edited in any way.

COPYRIGHT®©2006 12 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

HYPERCOSM SYSTEM COMPONENTS

The Hypercosm system is broken down into two essential families of software
components: viewing and development. The viewing software is the Hypercosm Player,
which is used to display 3D content that is in Hypercosm format. The development
software is Hypercosm Teleporter, which translates 3D content from 3ds Max ™ to
Hypercosm format and Hypercosm Studio, which is a scripting tool that allows
developers to program custom behaviors for Hypercosm applets.

HYPERCOSM PLAYER

The Hypercosm Player (see Figure 1.1) is free software that allows users to interactively
view 3D content. By viewing the 3D content in Hypercosm Player the user can navigate
the 3D scene by rotating, panning, and zooming. The user is also able to change the
rendering modes (smooth shading, flat shading, or wireframe) of the 3D scene.
Hypercosm content can also have many other sophisticated interactions and behaviors
such as the simulation of physics.

The Hypercosm Player can be used to publish 3ds Max™ models that have been
exported with Hypercosm Teleporter. Hypercosm Player can be integrated with a web
browser (Internet Explorer, Firefox, etc.) or as a standalone 3D player.

Figure 1.1: Example of Hypercosm Player

COPYRIGHT®©2006 13 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

HYPERCOSM TELEPORTER

Hypercosm Teleporter (see Figure 1.2) translates 3D model and animation information
from an existing 3D authoring tool, such as Autodesk’s 3ds Max™, and transforms it
into a web deployable Hypercosm 3D applet that can be viewed using the Hypercosm
Player. When Hypercosm Teleporter exports a 3D scene, it encrypts and compresses the
3D information so the 3D content can be shared in an efficient and effective manner. By
using Hypercosm Teleporter the user is able to share his or her 3D content with anyone
that has the Hypercosm Player installed.

Figure 1.2: = Export to Hypercosm Teleporter

COPYRIGHT®©2006 14 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

HYPER

COSM STUDIO

Hypercosm Studio (see Figure 1.3) is a scripting tool used by Hypercosm developers to
add complex behavior, interactivity, and even physics to Hypercosm 3D content. Using
Hypercosm Studio, you can program directly in Hypercosm’s high level, 3D graphics
oriented OMAR (Object Oriented Modeling, Animation, and Rendering) language to

add high level functionality relatively quickly and easily.

#¢ Hypercosm Studio - [fish.omar]

DL @%
|
[HTML
=423 OMAR Source Cods
bubbling_fisk
[B] fish.omar
(2 Other
#-(2 Sounds
w0 Testurss

File Edit Wiew Project

Buid System Window Help

BB S B% »rO

] X

fish.amar I

fish omar
Obhject-Oriented Hodelling and Rendering

(OHAR)

Copyright (c) 2000 Hypercosm, Inc

ey i o o i e e,

do fish_anim:

include "systens3d. ores";
include "system‘actors ores";
include “"systemsshapes ores":
include “"systemshulls ores”;
include "systensanims. oress”:
include "system bubbles ores":
include "systemsargs . ores";

subject fish

extends
tined_actor
does
4/ constructor
e
werb new with
scalar tail _wags_per_sec = 1 7 4
scalar fin_wags_per_sec = 1
goalar max_tail_deflection = 20
scalar max_fin _deflection = 30:
integer blink_time = 50
end; A4 new

<7 rendering nethods

e

objective shape form with
goalar tail_deflection = 0:
szcalar fin deflection = 0:

boolean blink is falss:

it e e b et

e |7

Build |Debug

Find In Files

Far Help, press F1

tni,Coll | NOM

Figure 1.3:

Example of Hypercosm Studio

COPYRIGHT®©2006 15

HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

HYPERCOSM CONTENT CREATION
WORKFLOW

Each content creation project has its own unique aspects and challenges, but all tend to
follow a standard workflow as described below.

STEP 1: BUILD

The first step is to build the 3D models that will be used in the
simulation. This is done using COTS 3D modeling software.
We encourage content creators to use Autodesk’s 3ds Max™
software because Hypercosm’s tools (Hypercosm Teleporter, in
particular) have been optimized to work very efficiently with
models created using this software.

STEP 2: EXPORT

Next, Hypercosm Teleporter is used to export the scene from the
COTS modeling software into Hypercosm’s OMAR script code.
This script code represents the entire underlying representation
of the 3D scene. By modifying this script code, you can change
any aspect of the scene including the shapes of objects, the
materials applied to surfaces, or the animation of objects.

STEP 3: SCRIPT

Once you have access to the script code that represents the
scene, you can add your own additional script to add complex
elements that can’t be created using the COTS modeling tools
that are used to create the models and animations. These sorts
of elements include user interactions, physics, and sounds.

Hypercosm File Types

In the process of creating Hypercosm content, you will
encounter and use four new file types that are unique to the
Hypercosm system. These file types include the following;:

COPYRIGHT®©2006 16 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

HYPERCOSM SCRIPT FILES

There are two types of Hypercosm script files: “.OMAR?” files and “.ORES” files. Both
tiles contain text written in the OMAR language. “.OMAR” files contain a “main”
section that defines a starting point for actually running the program. “.ORES” files are
“OMAR Resource” files that contain script code that can be used by other “.OMAR” and
“.ORES” files but can’t be run by itself. These files contain a wide variety of utility
functions and 3D shape definitions.

Figure 1.4: Hypercosm Script (OMAR) File Icon

Figure 1.5: Omar Resource (.ORES) File Icon

HYPERCOSM STUDIO PROJECT FILES

Hypercosm Studio Project (.HSP) Files are used to keep track of the various files that
may be used in a Hypercosm project. A project may include a number of OMAR and
ORES script files along with a number of resources. These resources include graphics
files for textures, sounds, and text. Also, the web page that contains an applet may also
reference Flash or Shockwave files. The Hypercosm Studio Project File contains links to
all of the files used in a project and gathers together these files whenever a project is
compiled to a web page.

&

Figure 1.6: Hypercosm Studio Project (.HSP) File Icon

COPYRIGHT®©2006 17 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

HYPERCOSM APPLET FILES (.HCVM)

Hypercosm applet (HCVM) files are the files that are actually distributed over the web
and run by the Hypercosm Player. These files are designated by the HCVM file
extension which stands for “Hypercosm Virtual Machine”, the software engine that is
needed to run these files. Hypercosm applet files contain a compressed or “compiled”
version of the script code that is contained in the . OMAR and .ORES files that are used
to create a .HCVM file. The applet file has been stripped of all symbolic information
contained in the script code such as variable and type names and will therefore be many
times smaller than the set of OMAR and .ORES files that go into building the applet file.
Since all human readable information has been stripped out of the applet file, applet files
are similar to binary executable files since they no longer are human readable but can be
executed by a computer.

Figure 1.7: Hypercosm Applet (HCVM) File Icon

COPYRIGHT®©2006 18 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 2:
RUNNING HYPERCOSM

APPLETS

LESSON OBJECTIVES:

= Know how to run Hypercosm applets
= Understand how Hypercosm applets are structured

= Understand the standard Hypercosm applet user interface

LESSON CONTENTS:

= [nstalling the Hypercosm Player
= Running Hypercosm applets
0 Hypercosm applet file structure
0 3D Scene Navigation
0 Hypercosm Applet Dock Bar
o Standard Controls

= Hypercosm Control Panel

COPYRIGHT®©2006 19 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

INSTALLING THE HYPERCOSM PLAYER

The first thing that you need to do before Hypercosm applets can be run is to install the
Hypercosm Player. The Hypercosm Player is freely downloadable from the Hypercosm
web site at: www.hypercosm.com/download/player . The Hypercosm Player is freely
distributable so you can distribute it along with your content if you wish. If you are
distributing the content via CD, it’s often a good idea to include the Hypercosm Player
along with the content since the user may not necessarily be connected to the Internet. If

you know that the user of the content will be connected to the Internet, then the content
may provide a link to the current version of the player on Hypercosm’s web site. This
will ensure that the user installs the most up-to-date version of the Hypercosm Player.

CHECKING TO SEE IF THE HYPERCOSM
PLAYER IS INSTALLED

In order to check to see if the Hypercosm Player is currently installed on your system,
you can consult your system’s control panel. To do this, follow these instructions:

1) Open the System Control Panel
To open the control panel click the "Start" button and then select the "Settings" menu
item as shown below and select the "Control Panel" menu option to the right.

El Programs 3

<y Documents 4

, B~ Control Panel

Setrings

\ & network Connections
J-.J Search o z
7.y Prinkers and Faxes

| Help and Support E' Taskbar and Stark Menu

Run...

J Log OFff megaheda. ..
@ Shut Dawr...
I I Stark

Windows XP Professional
O &

=

Figure 2.1: The Windows Settings Menu

COPYRIGHT®©2006 20 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

2) Select “Add or Remove Programs”

=E
File Edt ‘“ew Favorites Tools Help | -:,'
Q- - Y BB

Address Iﬁ' Control Panel j G0

¢ = {

Accessibility Add Hardware Add or Avantao
Options Remove Conneck

@
7 Search e Folders

| »

b

See Also

& windows Update
(7)) Help and Support

% ? T 2
=
BDE Date and Time Dell Wireless Display
Adrministratar WLARN Utility
Folder Options Fonts Game Hypercosm
Contraollers
P & = D
Internet Java Kevboard Mail
Options ;I
Figure 2.2: The System Control Panel

3) Search for “Hypercosm Player” in the list of installed programs
If Hypercosm Player is installed, it will appear as shown below in the list of installed

programs.

COPYRIGHT®©2006 21 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

6 Add or Remove Programs

Currently installed programs: [T Show updates

Sort by: INan vl

o =

Hi-Speed USE Bridge-Metwark Cable

}:{ Hypercosm Player 3.21

Click here For support information.
La

this program From your computer,

P Hypercosm Studic 4.0.0.6

Size

-
1.19MB

46, 49ME J

Size
H Hypercosm Teleporter 1,9.0,15 Size 12, 16MBE
J iTunes Size 13.28MB
é; J25E Runkime Environment 5.0 Update 1 Size 117.00MB
@ JZ5E Runkime Environment 5.0 Update 2 Size 117.00MB
ey 175F Runtime Fovironment 5.0 1 Indake 4 112 nome T
Figure 2.3: The Add or Remove Control Panel

RUNNING HYPERCOSM APPLETS

Once the Hypercosm Player is installed, running Hypercosm applets is easy. There are

two ways to run Hypercosm applets.

1. Directly

To run the Hypercosm applet directly, simply double-click on the applet
(HCVM) file. This will start the Hypercosm Player, which will open up a
window containing the graphics displayed by the Hypercosm applet. To
stop the Hypercosm applet, simply close the window.

2. Indirectly

The second way to run a Hypercosm applet is by displaying a document

containing a Hypercosm applet. Most often, this is a web page. When the
web page is loaded, the Hypercosm Player will automatically start and
display the applet. When you close the web page, the Hypercosm Player will

also shut down.

COPYRIGHT®©2006

22

HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

HYPERCOSM APPLET FILE STRUCTURE

Hypercosm content is often composed of a collection of different files that are all needed
to describe a 3D scene or simulation. These files include the following:

1) The Applet (HCVM) File
This is the main file that contains the Hypercosm code defining the geometry
in the scene and the scene behavior. This file is normally played by opening
up the web page accompanying the applet in a standard web browser such as
Internet Explorer, Firefox, or Netscape. The applet file may also be double-
clicked on and run by itself. This will cause the applet to run and display a
simulation in its own window instead of inside of a frame in a web page.

2) A Web Page (HTML) File
This is a standard HTML file that describes the web page containing the
Hypercosm applet.

3) Texture (.JPG, .JPEG, .GIF, or .PNG) Files (Optional)
These are files used to map details on the surfaces of objects in the 3D scene.

4) Sound (WAYV, .MP?3) Files (Optional)
These are sounds that may be played by the simulation.

COPYRIGHT®©2006 23 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

i
File Edit Yiew Faworites Tools Help | :f'
eBack - J \e l‘ﬂ /..jSearch ! Folders v

s a8
Agldressl | j @0
E.| B K B) -
O Picture Tasks sihouette_... smooth_ico... spin_jcon.gif stop_icon.gif Text2.gif
T;l View a5 a slide shaw
(@) Crder prints online = = = = =
i) Prink pictures translate_a... two_button... upright_icon... wireframe_... zoom_icon.gif

e-') Copy all items to CD

S
¢ Q@ @ @ -
Fil d Folder Task ¥
te androlder lasks e index.htm v22-tclhovm deselect.way hideway select, way
Other Places ¥
Q & &§ =5 =5
p ~
Details = show, way Alum_2.jpg back_texpo... background... Blade
v22 Stripe_01.jpg
File Folder
Date Modified: Tuesday, ﬁ tj ﬁ ﬁ ﬁ
Movernber 22, 2005, 12:13 PM
bottorn cabin bottom_tex... bottom_tex... bottarn_win... cabin
door.jpg door_hinge. .. LI

Figure 2.4: An Example of a Typical Folder Containing a Hypercosm Applet

3D SCENE NAVIGATION

When viewing 3D content with the Hypercosm Player the user can use the mouse to
move around the 3D space. The standard mouse controls allow the user to rotate, pan,
and zoom.

ROTATE

To make the scene rotate, click and hold the left mouse button and drag the pointer
horizontally or vertically in the direction you want the scene to rotate.

L §

— ~

»

Figure 2.5: Left button to rotate

COPYRIGHT®©2006 24 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

PAN

To change your direction of view, click and hold the right mouse button and drag the
pointer in the direction that you want to your view to move.

Figure 2.6: Right button to pan

ZOOM
To zoom in or out of the scene, click and hold both mouse buttons (or the middle mouse

button), while you drag the pointer towards you to zoom in or away from you to zoom
out.

Figure 2.7: Both buttons to zoom

STANDARD HYPERCOSM APPLET DOCK BAR

The applet docking bar is displayed at the bottom of the running applet and is the place
where the applet controls are kept.

Figure 2.8: Applet Docking Bar

COPYRIGHT®©2006 25 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

STANDARD CONTROLS

Hypercosm applets using the standard docking bar may contain any of the icons shown
below. Applets may be also be configured to omit or add any of these controls, but most
standard applets will contain this full set of controls.

ABOUT ICON

This icon can be clicked to cause the web browser to bring up the Hypercosm web page.
The Hypercosm web page is a source of information about the various software tools
that are available to create and display Hypercosm content and also provides useful
support and troubleshooting information.

Figure 2.9: The About Icon

HIDE ICON

This icon toggles the docking bar's auto-hiding feature. When enabled, auto-hiding will
cause the dock to disappear when the user moves the cursor away from the dock. When
the user moves the cursor back to the location of the dock, the dock will reappear. If the
auto-hiding feature is not selected, then the dock will always be displayed.

Figure 2.10: The Hide Icon

COPYRIGHT®©2006 26 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

MOUSE ICON

This icon can be clicked to display a set of controls for setting the number of mouse
buttons to use. Normally, the controls are configured to use a two button mouse. If the
user wants a one button interface, then this control allows the applet to be configured to
use just a single mouse button.

Figure 2.11: The Mouse Icon

GRAPHICS ICON

This icon can be clicked to bring up a set of controls for configuring the way the 3D
graphics are drawn. This is where the user can change the rendering mode of the scene
(smooth shaded, flat shaded, wireframe, etc).

Figure 2.12: The Graphics Icon

COLLABORATION ICON

This icon can be clicked to display the collaboration controls. The collaboration controls
can be used to configure an applet to run in synchronization with another applet
running on another machine on the same network. Hypercosm collaboration allows
peer-to-peer collaboration (one person to one other person) across a network without
firewalls. The other user may be located across the hall or across the world. If an IP
address for the other user is provided in the web page, then the applet will connect with
that user. Otherwise, the applet will try to connect with another user on the same
subnet. The collaboration controls allow the two users to switch off being the "leader”

COPYRIGHT®©2006 27 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

and the "follower". When the user is playing the "leader", then they control the view for
themselves and for the other user. When the user is playing the "follower", then they see

scene from the point of view of the leader and have no control over the view.

Collaborate

Figure 2.13: The Collaborate Icon

HELP ICON

This icon can be clicked to bring up information about how to use the Hypercosm applet
and the various applet controls.

Figure 2.14: The Help Icon

THE HYPERCOSM CONTROL PANEL

On occasion, you may find it necessary to check to see what version of the Hypercosm
Player you are running or possibly to change the Hypercosm Player’s configuration.
You can do this by using the Hypercosm Player Control Panel.

OPENING THE HYPERCOSM CONTROL PANEL
In order to open up the Hypercosm Control Panel, follow the steps shown below:
1) Open the System Control Panel

To open the control panel click the "Start" button and then select the "Settings" menu
item as shown below and select the "Control Panel" menu option to the right.

COPYRIGHT®©2006 28 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EI Pragrams r

2 Diocuments 3

Settings | B Control Panel

—~ & Mebwork Connections
) Search =

©

S

2

£ ¢ ':;, Printers and Faxes
(=]

= u Help and Support E‘ Taczkbar and skart Menu
& Z=1 Run...

2

-g I Log OFf megaheda...

c

3 EOI Shut Down. ..

I | Stark

S

Figure 2.15: The Windows Settings Menu

2) Open the Hypercosm Control Panel
Once the control panel window is open you should see a window that is similar to
the one pictured below. One of the icons in this window will be a Hypercosm logo
the label "Hypercosm". Double click this icon to bring up the Hypercosm control
panel.

COPYRIGHT®©2006 29 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

=Y

File Edit Yiew Favaorites Tools Help | -:,'
(- &Y -] -
_) Bach _) LE P Search i Folders
Address IG‘ Control Panel j o
-1 A
See Also £ 6 % :ZD Q@
,u Windaws Update Accessibility Add Hardware Add or AvantGo
Options Remaw,.. Connect
(7)) Help and Support
BE ¥ P R
\.-r‘, L
BDE Date and Time Dell Wireless Display
Adrminiskrator WLAN Lkility
i | ‘ -
Faldet Options Fonts Game
Controllers
-ﬁ-) =
e
Internet Java Keyboard

Cptions LI

Figure 2.16: The System Control Panel

] m
|={|Hypercosm 3D Player Settings il

Fasterizers | About |

Direct 30 with Acceleration
Direct 30 without Acceleration
OpenGL without Acceleration -

OpenGL is the preferred razterizer for users with a high
performance 30 accelerator card.

Video Card:
I.é.TI MOBILITY RADEOM 9800 FRO TURBO

Last Rasterizer Uzed:

IDpenGL with Acceleration

Test Selected | Show Config | Usge Defaults |

1] I Cancel | Spply |

Figure 2.17: The Hypercosm Control Panel

COPYRIGHT®©2006 30 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

FINDING THE HYPERCOSM PLAYER VERSION
NUMBER

To find out what version of the Hypercosm Player you are using, click the “About” tab
at the top of the Hypercosm Control Panel. The version number is listed at the top of the
text box.

}:{Hypercusm 3D Player Settings ll
Fiasterizers About I

H The Hypercosm 3D Player

Version 3.21.0.0 =l
Copyright 1999-2005 Hypercosm LLC
Al Rights Feserved.

Includes Xaudio software,

Copyright 1936-2000 >audio Corporation.
Al Rights Reserved.

Includes software from Geomisfare, Inc.

Includes software bazed in part on the wark of the
Independent JPEG Group.

Includes cryptographic software wiitten by Ernic roung
[eapiscmptzoft cam]

Includes software fronm libpng, libungif, and zlib.

For news and updates, pleasze wisit
vttt hppercasm. com

K | Cancel | Apply |

Figure 2.18: The Hypercosm Control Panel About Tab

COPYRIGHT®©2006 31 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 3:

HYPERCOSM STUDIO

INTRODUCTION

LESSON OBJECTIVES:

= Become familiar the Hypercosm Studio user interface
= Understand how to open, create, edit, and save files

= Know how to change system settings

LESSON CONTENTS:

= User Interface Layout
= Opening Files

= Code Editing

= System Settings

COPYRIGHT®©2006 33 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

USER

INTERFACE LAYOUT

Hypercosm Studio’s user interface is similar to other code editing integrated
development environments (IDE’s) for writing text based code. It is composed of three

main panels and a toolbar as shown below:

percosm Studio - [relativity.omar]

E\Ie Edit Wiew Project Build System Window Help

=181
=lal x|

Toolbar T [TEEd S5 B |5 a@%(w) 6

Project
Manager

Out

Figure 4.1:

"z
0 HTML

=23 OMAR Source Cods

. -[B) relativity.omar

(21 Other

(2 Sounds

(23 Testures

—

relativity. amar |

I
(

relativity. omar

Object-Oriented Modelling and Rendering {OMAR)

Copyright (c) 2004 Hypercosm, LLC.

{
{
{
{
{
{
{
d

include
include
include
include
include

Kl

o relativity anim:

P

<

raysten/3d.ores”;
"aystemfactors.ores”;
"systen/meshes. ores”;
"system/ogrid_shapes.ores”;
"systen/paths.ores”;

]

Ll

Parsed ok!

Reading "system/actor_simulation.ores .
Reading "system/actor_containing.ores".

mmrﬂ-hmrmnﬁemmemnhtudm\tmp\rd atiwvity.hcum. ..

Compiling debug info to C:\Program Files\HypercosmiHypercosm Studiotmpirelativity.hcdb... Done!

4

Build [Debug [Find In Files|

For Help, press F1

The Hypercosm Studio User Interface

THE TOOLBAR

lni, Coll |

o [

Script

The toolbar contains a set of shortcut keys to activate commonly used tools. These tools
are described in more detail in the following sections.

COPYRIGHT®©2006

34

HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

New Save Project Run Run
File Open Project Settings Print Project File Stop

v ¥ N Y v v ¥
DEEd a% | 2|8 (R%|»)@
71 P I T I

Save Save Cut Copy Paste Build Compile
File All Web Page Project

Figure 4.2: The Toolbar

THE PROJECT MANAGER PANE

x|
ESRITR H T L -
=53 OMAR Source Code
—[B] dna.omar
-.[E] pdb.omar

B pob_atom.ores

- [B] pdb_molecule. ores
- Other
=24 Sounds
----- @ deselect way e
----- @ hide. wav
----- @ select way
----- @ show.way
223 Testures
----- about_icon, gif
----- ahimation_icon. gif
..... back_arrow_icon, gif
----- background.jpg
..... blue_dial_icon. gif
----- camera_icon. gif

Figure 4.3: The Project Manager Pane

The project manager pane is the tall, thin pane on the upper left side of the window.
This panel has a list of the files in the project and allows you to easily navigate and open
tiles belonging to the project. The files that are listed here include script files, texture
tiles, sound files, web pages, text files, and other project resources.

COPYRIGHT®©2006 35 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

THE SCRIPT PANE

pdb_maolecule.ores * pdb_atom.oresl

&) pdb_molecule.ores *
{ﬂ'*ﬂ'*ﬂ‘**ﬂ'*ﬂ‘ﬂ'***ﬂ‘ﬂ'*ﬂ'*ﬂ‘*ﬂ‘**ﬂ‘*ﬂ‘ﬂ'*ﬂ‘*ﬂ‘ﬂ'*ﬂ‘*ﬂ‘**ﬂ'***********************}

! pdb_molecule.ores 1

H OMAR Resources (ORESF) 1
{1?1??H?ﬂ‘1?1?1?1?ﬂ‘1?1?1?1?ﬂ‘ﬂ'ﬂ‘#ﬁﬂ‘ﬂ'ﬂ‘1?1?ﬂ‘ﬁ'ﬂ‘1?1?ﬂ‘1??HH?ﬂ‘1?ﬂ‘#ﬁﬂ'wﬁ#ﬁ#ﬁﬁ#ﬁ#ﬁﬁ#ﬁ#ﬁﬁ#ﬁ#wﬁﬁ}

i '

! Contains a utility class definition to parse files 1

H in the PDE (Protein Data Bank) format. 1

i +

FEEREFTHEEESNTH
{ [Ei pdb_atom.ores o] [
{ oo ok ok o o ok o b o o ok o o b o b o b ol ko o o
{**ﬂ'*ﬁ****ﬁ** -
{ pdb_aton.ores

0MAR Resources (0ORE3)
{1:XT‘KT‘K'KT‘KT‘K'K1:‘.\'%‘1:'8‘1:ﬁw‘x‘x‘xXTW‘K‘K‘KTWW‘K‘KTWT‘K‘KT‘KTW‘KT‘KTW‘KW'
include "pdb_

Contains a utilicy class definition to pars:

{
i { in the PLE (Protein Data Bank) format.
subject PDE_m ’

extends | L _ILI
renderahl JLI_I L

Figure 4.4: The Script Pane

The large pane on the right is used to view and edit script code. This pane is capable of
displaying multiple subwindows each of which may contain a separate file. If the script
subwindows are maximized, then you can navigate between the files by using the tabs
at the top of the script pane.

THE OUTPUT PANE

Eeading "system/scalar_parsing.ores’.
Parsed ok!

|
|
Compiling to C:“Program Files“HypercosmHypercaosm Studic“ExamplesyExample Projects

Compiling debug info to C:M\Program Files‘\HypercosmiyHypercosm StudiohExamples'Examy

|

Build [Debug |Find In Files |

For Help, press F1

Figure 4.5: The Output Pane

COPYRIGHT®©2006 36 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

The output pane is the short, wide pane located at the bottom of the Hypercosm Studio
window. This pane is used to display compile time and run time information. It has
three separate tabs: Build, Debug, and Find in Files.

THE BuiLD TAB

When this tab is selected, the output pane shows error messages generated by the
compiler.

THE DEBUG TAB

When this tab is selected, the output pane shows messages generated by the Player or
generated by “write” statements in your script code. Write statements are often used in
the process of debugging complex applets.

FIND IN FILES

This tab is used to display results returned by the Find and “Find and Replace”
functions.

OPENING FILES

To open a script file in Hypercosm Studio, simply select “Open...” from the “File” menu
or press the open file icon on the toolbar.

COPYRIGHT®©2006 37 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

i Hypercosm Studio
Filz Edit “iew Project Build System ‘Window Help

Mew Chrl+1 E|§|@ﬁ|»’.|
Oper... Ctri4+0

Revert

Close R4

Mew Project...

Cpen Project., .
1Zlose Froject

Sawe ChHHS

SavE G5

Save Projech

Save Al Ctri+shift+35

Frint. .. CErHP
Brint Bresiem
Frint Setup...

Recent Files 3
Recent Projects 3

Exit

Figure 4.6: The Open File Menu

DERa w%

PR S R e

IJIpen

Figure 4.7 The Open File Icon on the Toolbar

This will bring up a dialog box as shown below. You can navigate to a project or using
the buttons at the bottom, you can quickly jump to a directory where Hypercosm script

files are located.

COPYRIGHT®©2006 38

HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

open 2
Look in: I_} Includes j - sk E-
| Animation |2 5ensing I Utilities
| Devices |2 simulation 1 Viewing
| Z)Drawing [C)50unds 3d.ores
| IHvpercosm Teleporter [Text % versian.ini
|_IModeling 1) Time:
|__JRendzring |JUser Inkerfaces

File name: || Open I
Files of type: IAII Files [7.7] j Cancel |

"Jump To Directary

Lurrent Froject | |ncludes | My Hypercosm | E xamples |

4

Figure 4.8: The “Open File” Dialog Box

CURRENT PROJECT

This button jumps to the current project if a project is open. If no project is open, then
this button will be disabled.

INCLUDES

This button jumps to the directory “Hypercosm Studio/Includes/” where the standard
set of “.ORES” include files are located. These include files each contain bits and pieces
of Hypercosm functionality that you can use to add additional capabilities to your own
projects.

MY HYPERCOSM

This button jumps to the directory “My Documents/My Hypercosm/” where you may
put your own Hypercosm projects. You can locate your own projects anywhere, but it's
sometimes convenient to store them in a centralized location such as this to keep them
together.

EXAMPLES

This button jumps to the directory “Hypercosm Studio/Examples” where a collection of
sample scripts and projects are located.

COPYRIGHT®©2006 39 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EDITING FILES

Hypercosm Studio also has standard code editing features. Once you’'ve created or
opened a file, you can use the text editing features under the Edit menu. They include
commands for undoing, using the clipboard, and selecting and finding text.

:Z: :j:: Hypercosm Studio

File | Edit “iew Project Build Systern Window Help

0 Unda e () |§ | | »)
JJ Fedo ol @ m .

Cuk Chrl+4

Copey Chrl+C

Paske R+

Delete Del

Jelect 4l Clrl+f,

Find... Chrl+F

Find in Files ...,

Replace. .. Chrl+H

GO T, Ctrl+G

Lire: Ending }

Advanced 3

Togagle Baokrmark Creel+F2

Mexk Bookmiark, Fz

Prewious Bookmark 3hift+Fz

Figure 4.9: The Edit Menu

FIND IN FILES

One often used feature of Hypercosm Studio is the ability to search an entire directory of
files for a pattern of text. This is used quite often when searching for definitions of
script code utilities that you’'d like to use.

Find in Files x|

Find what: A Includes |
In files/file types: I".omal;".ores j Examples |
In folder: IC:\Program FileshHypercozm®, j J My Hupercosm |

¥ tdatch case ¥ Look in subfolders

¥ Fegular expression
Find I Cancel |

Figure 4.10: The Find In Files Dialog Box

COPYRIGHT®©2006 40 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

The Find In Files dialog box also has a set of buttons to the right that set the search path
to commonly used directories.

INCLUDES

This button is used when you want to search through the set of utility .ORES files that
are included with Hypercosm Studio.

EXAMPLES

Use this search path to search through the set of examples provided with Hypercosm
Studio.

MY HYPERCOSM

Use this search path to search your own Hypercosm script files that may be stored in the
folder “My Documents/My Hypercosm/”.

COMPILING FILES

To compile a file, select “Compile File...” from the “Build” menu or press the compile
file icon on the toolbar.

Hypercosm Studio
File Edit ‘iew Project | Buid System Window Help

”D ﬁnﬁ|@ RunP.r'n]ect F5 b @
Run File: F&
Skop Chrl+Break

Compile Project F7
R ecompile Project

Compile File

Build ‘web Page. .. b
Yigw Yweb Page

Figure 4.11: The Compile File Menu

When you compile a file, it will be compiled to a “.HCVM” file with the same name as
the “.OMAR” file that it was compiled from and it will be placed in the same directory
as the script file.

COPYRIGHT®©2006 41 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

RUNNING FILES

To run a Hypercosm script file, select “Run File...” from the “Build” menu or press the
run file icon on the toolbar. This will first compile and then run the file.

Hypercosm Studio
File Edit ‘iew Project | Buid System Window Help

”D ﬁnﬁ|@ RunPn]ect F b @
Skop Chrl+Break

Compile Project F7
R ecompile Project
Compile File F&

Build ‘web Page. .. b
Yigw Yweb Page

Figure 4.12: The Run File Menu

DEeWE ek | Be |8 a%(») e

Run File

Figure 4.13: The Run File Icon on the Toolbar

When Hypercosm Studio runs the file, it does not create an applet file in the directory of
the script file. To create an applet file, you should use the “Compile File” command
instead.

CHANGING THE VIEW AND OPTIONS

The view menu is used to change a variety of options that determine how the interface
looks and operates. These settings will not change the operation of the compiler, but
merely change the aesthetics and operation of the user interface.

COPYRIGHT®©2006 42 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

ypercosm Studio

Fle Edit | Wiew Project Buid System
JJ O v Toolbar

Al o Shabus Bar

w Cukput

w Project Manager ChrlH-'W

Windowe Help

EX-LILEX]

wwhitespace

Cpkions. ..
Cuskomize. ..

Figure 4.14: The View Menu

The first four items in the view menu are used to hide and show the various panes of the
user interface. For example, if you are only working on OMAR files without projects,
then you may choose to hide the Project Manager pane.

WHITESPACE

“Whitespace” is a term that refers to the spaces and tabs in a text document. On
occasion, it may be useful to graphically show the spaces and tabs. This option is used
for that purpose. The default setting for this value is to not graphically show the

whitespace.

Y shape-instance-is
s » stopwatch-with
=l = =
H e k2
end;

S end s

) b
##-instance

Y werb-check _keys-iz

» werb-draw_instructions
» bod

W iz
» » verb-draw_line

s » W string-type-line;

Figure 4.15: Whitespace Shown (Left) vs.

COPYRIGHT®©2006

time-=-clock_timer-get_time;
rotate-hy- 20 around-<1-0-0>;

B if-key_dowm-char_to_key-"-"- i:,hen
) ») rezet;

» » end;

» end ;e F#-check_keys

at:scalar-®-=+-.9,-y-=-.8;"

43

shape instance iz
stopwatch with
time = clock_timer get time;
rotate by 90 around <1 0 0x;
end;
end; /4 instance

verb check_keys is
if key_dowm char_to_key " " i:,hen
reset;
end;
end; 44 check_kews

verh draw_instructions
at scalar x = -.9, ¥ = .&;
iz
werb draw line
string type line:

Hidden (Right)

HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

OPTIONS

The options dialog box can be used to change settings that determine how the code will
appear and how it is formatted as well as a variety of other miscellaneous settings that

determine Hypercosm Studio operation.

EDITOR COLORS AND FONT

The colors and font that are used to display code are always a matter of personal
preference. These parameters can be changed in the editor colors and font options
dialog box. You can even change the colors that are used to highlight keywords in the
OMAR language, the colors used to display numbers, the colors used for comments and

other specific details.

Editor Calars and Font | Formattingl Mise I E ditor | Wb Emwserl

x|

— Calor Spntax Highlighting
Foreground
Highlighted Lines
Keymords
Left Margin Background
Line Mumbers
Numbers | I - l
Operators
Stringz
Teut ||
—Font
Mame: Size:
ICUuriel MHew j IS j
—Sample

QK. I Cancel | Apply | Help

Figure 4.16: The Editor Colors and Font Tab

FORMATTING

The formatting tab is used to change the way code is indented.

COPYRIGHT®©2006

44

HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

x|
Editar Colars and Fomt Formatting | Misc I Editor | weh Erowserl

—Tab:

Tab Size: IE]

[~ Carvert tabs to spaces while typing

r Indentation

v Copy indentation from previous line

— Line Endings for Mew Files
& [0S [CR LF)
 Unix [LF]
" Mac CR)

(1] I Cancel | Apply | Help |

Figure 4.17: The Formatting Tab

Misc

The misc tab is used to set a variety of system settings that determine how Hypercosm
Studio operates.

COPYRIGHT®©2006 45 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

E ditor Calars and Font | Formatting Misc IEditor | Wieh Erowserl

- P[Dglalll

[+ ‘Load last workspace on launcké

[~ Save documents o disk when a program iz run

¥ Show gutput window when a program is wn

v Clear output window before running program

[Prompt for program arguments when using "Fun File"

[+ FPrompt when kiling previous renderer

v idd resouces uzed by project automatically

v Search for resources that are not part of the active project
[v Offer template OMAR and HTML files for new projects

— Project Home Directon

Ic:\M_I,J Hypercosm Projects Browse. .. |
(1] I Cancel | Apply | Help |

Figure 4.18: The Misc Tab

EDITOR

The editor tab provides a set of additional options for changing the formatting done by

the code editor.

COPYRIGHT®©2006 46 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

E ditor Calars and Font | Formatting | Mise Editor | iafeb Erowserl

Editar

v s er Toolip while scrolling

¥ Do color syntax highlighting

¥ Eemember open documents and their positions
¥ Enable drag-and-diop editing

(1] I Cancel | Apply | Help

Figure 4.19: The Editor Tab
WEB BROWSER

The web browser tab is used to specify what browser to use to display applets in a web
page.

COPYRIGHT®©2006 47 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

x|

Editor Colars and Font Formattingl Mizc I Editor 'Web Browser |

Web Browser

& Usze system default web browses

" Use a different web browser

L

(1] I Cancel | Apply | Help |

Figure 4.20: The Web Browser Tab

CHANGING SYSTEM SETTINGS

The System menu is used to change system settings. These system settings consist of a
series of paths that tell Hypercosm Studio where to look for files that it uses.

::ZZ ZZ:Hyperl:usm Studio

Figure 4.21: The System Settings Menu

COPYRIGHT®©2006 48 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

SOURCE PATHS

System Settings

Source Paths | Resource F'athsl Executablesl

C:%Program Files\HypercosmhHypercosm Studio\ncludes

(1] I Cancel | Apply | Help

Figure 4.22: Source Paths System Settings

The “source paths” system settings determine where Hypercosm Studio looks for source
(script) files. If the source file is not in the current project, then Hypercosm Studio will

next look in this set of search paths for the file.

RESOURCE PATHS

System Settings

Source Paths Resource Paths I Executablesl

C:\Progran Files\Hypercosm\Hypercosm StudiohTestures
C:%Program Files'\HypercozmiHypercosm StudiohSounds

QK. I Cancel | Apply | Help

Figure 4.23: Resource Paths System Settings

COPYRIGHT®©2006

49

HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

The resource paths system settings determines where Hypercosm Studio looks for
resource (textures, sounds, etc) files. If the resource file is not in the current project, then
Hypercosm Studio will next look in this set of search paths for the file.

EXECUTABLE PATHS

System Settings - E ll

Source F'athsl Resource Paths Executables

— Compiler

IC:\F‘rogram FilezHypercozm Hupercosm Shudio',

Restore Defaults

— Interpreter

Browse |E:\F'rogram Filez\HypercosmHypercosm Player',

Restore Defaults

QK | Cancel | Apply | Help |

Figure 4.24: Executable Paths System Settings

Hypercosm Studio relies upon a pair of auxiliary executable programs in order to
function. The first program is called a “compiler”. This is the program that actually
reads the source code from your .OMAR and .ORES files and converts it into a form
where it can be executed (the . HCVM applet file). The second program is the program
that actually executes the applet code to draw the graphics and perform other tasks
specified by an applet. This program is called an “interpreter”. By default, Hypercosm
Studio places these helper programs in the directory “c:/Program Files/Hypercosm
Studio/Bin/”. If you want to change the location of these programs for whatever reason,
you can. However, if you move these programs around, you'll need to change the
executable paths settings to point to the compiler and interpreter programs in order for
Hypercosm Studio to continue to work properly.

CHANGING THE WINDOW LAYOUT

The Window menu allows you to quickly change how your windows are arranged. This
can be useful when you’d like to compare two files side by side.

COPYRIGHT®©2006 50 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

i1 Hypercosm Studio
File Edit ‘ew Project Build Swstem | window Help

JJDﬁnﬁ|@*§|gj| Close

Claze ol

s

Mexk
Presious

Cascade

Tile Horizonkally
Tile Wertically
Arrange Lcons

w 1 welcome.amar

Figure 4.25: The Window Menu

FINDING VERSION INFORMATION

The Help menu is used to bring up a window that displays information about
Hypercosm Studio.

::ZZ ZZ:Hyperl:usm Studio
Fil= Edit Wiew Project Build Syskem ‘Window | Help

0 = n ﬁ | @ Q | é’f: E |§ About Studio. ..

Figure 4.26: The Help Menu

The About Box is used to find out the version number of Hypercosm Studio. The version
number appears right below the Copyright notice.

COPYRIGHT®©2006 51 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 4:
HYPERCOSM STUDIO

PROJECTS

LESSON OBJECTIVES:

= Understand the function of projects
= Know how to open and existing project or create a new project
= Know how to add files to a project

= Know how to compile and run a project

LESSON CONTENTS:

= What are projects used for?

= Opening projects and creating new projects

= Adding files to a project and selecting a main file
= Compiling and running projects

= Changing project settings

COPYRIGHT®©2006 53 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

WHAT ARE PROJECTS USED FOR?

Hypercosm projects are used to keep track of the collection of files that are used in
building a 3D simulation. These files include script files, texture files, sound files and
other resource files. When you compile a project into a finished web page, Hypercosm
Studio collects all of these files together and copies the required resources into a
directory along with the applet. This makes it easy to prepare an applet for distribution
on the Internet, or on a CD or other recording medium.

OPENING PROJECTS

To open a project in Hypercosm Studio, just click on the “File” menu and select “Open
Project”.

Hypercosm Studio
File Edit “i=sw Project Build Swstern Window Help

Mew Chrl+M E|§|@*ﬁ|»}.|
Qpen,.. Chrl+0

Feverk

Close Chr|+F4

Plew Project...

ey Project, .
Zlose Projeck

SaEvE CErHS

Save f5...

Save Praject

Save Al Ctrl+shift+S

Brinit oo CEr{HP
Print Presiew
Print Setup,..

Recerit Files »
Recent Projecks »

Exit

Figure 5.1: ' The Open Project Menu

This will bring up a dialog box as shown in Figure 5.2. You can navigate to a project or
using the buttons at the bottom, you can quickly jump to a directory where projects are
located.

COPYRIGHT®©2006 54 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

Look jn: [55%E =ample Projer

| Application Examples
| Instructional Examples

File name; | Open |
Files of tupe: IF'miect Files [*.hzp] j Cancel |

"Jump To Directary

by Projects | Example Proiectsl

Figure 5.2: The Open Project Dialog Box

MY PROJECTS

The first button will jump to the directory “My Documents/My Hypercosm/My
Projects/”. When you install Hypercosm Studio, a directory is created for you in the
“My Documents” folder called “My Hypercosm/”. This directory has two subdirectories
called “My Projects/” and “My Scripts/”. If you like, you can store your Hypercosm
projects and scripts in these directories and they will be easy to get to. You can store
your projects anywhere you like on your computer.

EXAMPLE PROJECTS

This button will jump to “c:/Program Files/Hypercosm Studio/Examples/Example
Projects/” folder. This folder contains a variety of example projects that are useful to
examine for instructional purposes when you are learning Hypercosm scripting. Inside
this directory, there are two additional directories, “Application Examples” and
“Instructional Examples”.

APPLICATION EXAMPLES
The “Application Examples” directory includes a set of finished applications that were

created for a number of different purposes including education, entertainment, and
scientific visualization.

COPYRIGHT®©2006 55 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

INSTRUCTIONAL EXAMPLES

The “Instructional Examples” directory includes a set of simple example projects that
show how to use the various features and capabilities of the Hypercosm system. These
can be very useful for learning Hypercosm scripting.

CREATING NEW PROJECTS

To create a project, simply select “New Project” on the “File” menu.

:Z: :Z: Hypercosm Studio
File Edit ‘iew Project Build Iystem Window Help

Mew Chrl+1 E|§|@ﬁ|»’.|
Jpen... ChriH+O

Reyert

Close R4

Mew Project..
Cpen Project. .
Clnse Project

Saye CErHS

SEWE A5,

Sawe Prajeck

Save Al Ctrl+shift+S

Brint: .. CEEIHR
Brint Presiew
Frint Setup...

Recent Files »
Fecent Prajects »

Exit

Figure 5.3: The New Project Menu

This will bring up a dialog box as shown below:

COPYRIGHT®©2006 56 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

Mew Project il

Location IC:\Documents and Settingstmegaheda, ORBITEC My Docume |

v Create template OMAR filz
¥ Create template HT ML file

% Back I Finizh I Cancel | Help |

Figure 5.4: The New Project Dialog Box

By default, Hypercosm Studio will create template “.OMAR” and “.HTML" files for you.
If you already have your own “.OMAR” or “.HTML" files that you’d like to use, then
you can deselect these options and then add your own files to the project at a later time.

ADDING FILES TO A PROJECT

Once a project is created, it needs to be populated by files. To add a new file, just select
“Add Files” from the “Project” menu (see Figure 5.5). This will bring up a dialog box as
shown in Figure 5.6. Note that multiple files may be simultaneously selected from this
dialog box and added to the project in one step.

:Z: :j:Hypercnsm Studio
File Edit “iew | Project Build Syskem wWindow Help

m Settings... Al+FT |§ |@ 9& | B p . ‘

Add Files. ..

Add This File

Figure 5.5: The Add Files Menu

COPYRIGHT®©2006 57 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

Add File{s) to Projeck ﬂil
Lok jn: | 05 FDB Viewer | - = E9-
[Malecules ﬁPDB Format.pdf M—
_Website pdb.hcvm
dna.hcdb [pdb bsp
dna.hcym . ydb.omar
=] |i4] palb.opt
@j indez:. bkl pdb_atorn.ores

File name; |"pdb_at0m.0res" "pdb_molecule.ores” “'dna.om Open I
Files of type: IAII Files [7.%] j Cancel |

"Jump To Directary

Current Project

4

Figure 5.6: The Add File(s) Dialog Box (shown adding multiple files at once)

SELECTING A MAIN FILE

Once a collection of files is added to the project, a main file must be selected. A project
may potentially contain multiple “.OMAR?” files, each of which has can be run on its
own. The project needs to know which of these files is to be used as the main file of the
project and contains the main entry point for the simulation. There are two ways to
select the main file.

USING THE PROJECT MANAGER

To select the main file using the Project Manager window, move your mouse cursor over
the file in the Project Manager window that you want to select as the main file and click
the right button on the mouse. This will bring up a popup menu as shown below. On
this popup menu, move your cursor down to select the last option “Set As Main”.

COPYRIGHT®©2006 58 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

::Z: :j:Hypercnsm Studio
File Edit Yew Project Build Swstem ‘Window Help

pedg ek =R |2 |a% »)» @

m-L0 HTML
23 OMAR Source Code

pdb_a O

pdb g Editin Studio
D Other [P

D Sounds Wi final copy
B0 Testures

Remove From project
Add files to project. ..

Set as main

Properties. ..

Figure 5.7: Setting the Main File Using the Project Manager

USING THE PROJECT SETTINGS WINDOW

An alternative way to set the main file (if you don’t have a two button mouse, for
instance) is to use the Project Settings window. To do this, go to the “Project” menu at
the top of the window and click on “Settings...” as shown in Figure 5.8. This will bring
up the dialog box as shown in Figure 5.9. Using this dialog box, you can highlight the
file that you want to select as main and hit the “Set as Main” button.

-] Hypercosm Studio
File Edit ‘iew | Project Build Swstem ‘Window Help
O & Seftings... AIL+F7 ' E | | B)
E ﬁ Add Files. .. @ ﬁ .
sl This il |

Figure 5.8: The Project Settings Menu

COPYRIGHT®©2006 59 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

Project Settings x|
Generall Applet Source Files | Source Pathsl Fiezource Paths |

r— Main File:

pdb.ormar

r— Filez in Project

pdb.omar
pdb_atom. ores
pdb_molecule. ores

| Add || Fiemave ||

K | Cancel | Apply | Help |

Figure 5.9: Setting the Main File Using the Project Settings

Once a file has been selected as main using either method, it will appear in bold face
type in the Project Manager window.

COMPILING PROJECTS

Once files have been added to a project and a main file has been selected, then the
project can be compiled. To compile a project, simply select “Compile Project” from the
“Project” menu as shown in Figure 5.10 or press the compile project icon on the toolbar
as shown in Figure 5.11.

Hypercosm Studio

File Edit “iew Project | Buld System ‘Window Help

JJ 0= E ﬁ | @. RunP.m]ect FS B b .
R Fle F&
Stop Chrl+Break

Compile Project F7
R ecompile Project
Campile File Fa

Build Wweb Page. .. »
Vizw YWweb Page

Figure 5.10: Compile Project Menu

COPYRIGHT®©2006 60 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

Dcud @k (S R%»)>e
Compile Project

Figure 5.11: The Compile Project Icon on the Toolbar

As a project is being compiled, a list of all the files that are included in the project or
referenced by files included in the project will appear in the Build tab of the Output
window. Any compile errors will appear in the Output window. If you click on the
error message, Hypercosm Studio will conveniently open the file containing the error
and place the insertion point near where it believes the error is located. This makes it
relatively quick and easy to locate and fix compile time errors.

molecule name = args[l];
file_name = molecule_name p.
molecule name[l] iz to_uppe:

141 ‘ |

| Eeading " system/integer_parsing.ores .
i Reading "system/scalar_parsing.ores'.
Error in line #21, char #16 of "C:“\Program Files\HypercosmHypercosm

if some 1 then
A

"1" was not declared.
Parse errar!

Build |Dehug |F1'nd In F'i'Ies|

Far Help, press FL

Figure 5.12: A Compile Error Displayed in the Output Window

If the project has already been compiled and the applet is up to date, then Hypercosm
Studio will display a message in the Output window that says the applet is up to date.
On occasion, you may need to force the compiler to update the applet. This is most
often because a file is changed that is referenced by one of the files in your project but
not specifically included in the project. In this case, the modification date of the script
files in the project will be older than the creation date of the applet so Hypercosm Studio
believes that the applet is up to date. In this case, you can force Hypercosm Studio to
rebuild the applet just by selecting the “Recompile Project” command under the “Build”
menu.

COPYRIGHT®©2006 61 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

RUNNING PROJECTS

Once a project has been compiled, you can run it by selecting “Run Project” from the
“Build” menu as shown in Figure 5.13. You can also select the run project icon from the
toolbar as shown in Figure 5.14.

:Z: :Z:Hypercusm Studio

File Edit %ew Project | Build Swstem ‘window Help
§ Run Projact 3
|DEwd o ELETEEEE W > @
Fum File F&
Shom 1ZheH-Break:

Compile Projeck F7
Fecompile Project
Compie File F&

Build Web Page...]
Wiew Web Page

Figure 5.13: The Run Project Menu

Pead ag|r=e S| R% »)>e

Fun Project

Figure 5.14: The Run Project Icon on the Toolbar

If the project has not already been compiled, then Hypercosm Studio will compile the
project before it attempts to run it.

ADDING RESOURCES TO THE PROJECT
AUTOMATICALLY

A useful convenience offered by Hypercosm Studio is the ability to add resources to the
project automatically. Resources are textures files, sound files, or text files used by an
applet. Rather than requiring you to add each of these resources individually,
Hypercosm Studio has a mechanism for listening for what resources are requested by an

COPYRIGHT®©2006 62 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

applet when it runs and then searching for and adding those resources to the project
automatically. Since it's not uncommon for a project to require a few dozen textures,
this feature can save a lot of time. Normally, this feature is activated by default, but it
can be deactivated. This feature can be either activated or deactivated by going to the
“View” menu and selecting “Options”. This will bring up a dialog box with a series of
tabs at the top. Select the “Misc” tab and you will see a series of checkboxes for different
items. The checkbox for “Add resources used by project automatically” is third from the
bottom (see figure 5.15 below).

options x|

Editor Colors and Fontl Formatting Misc IEditor | Web Emwserl

— Prograr

v Load last workspace on launck

™ Save documents to disk when a program is run
[+ Show output window when a program is wh
[+ Clear output windaw befare running program
[Erompt for program arguments when using "Fun File"
v Prompt when killing previous renderer
@Add resounces used by project automatically
v Search for rezources that are not part of the active project
[v Offer template OMAR and HTML files for new projects

— Project Home Directory

Ic:\M_I,J Hypercosm Projects Browse. .. |
QK. I Cancel | Apply | Help |

Figure 5.15: Option to Add Resources Used By Project Automatically

CHANGING PROJECT SETTINGS

In addition to the system settings of Hypercosm Studio, each project can also have its
own settings. This is useful because sometimes a particular project will require
additional search paths to be used for finding a set of common files. In order to add or
change project settings, simply go to the Project menu and select “Settings...” as shown
in Figure 5.8. This will bring up a dialog box as shown in Figure 5.16. This dialog box
will have a series of tabs across the top. Each of these tabs is described in the next
section.

COPYRIGHT®©2006 63 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

GENERAL PROJECT SETTINGS

Project Settings x|
General | Applet I Source Files I Source Paths I Resource Paths |

DOutput File:

Idna.hcvn‘l |_|

Wwheb Output Directony:

IWebsite |_|

0K I Cancel | Apply | Help |

Figure 5.16: General Project Settings

OuTPUT FILE

This is the name that will be given to the applet file when it is compiled. It is also the
name that will be used in a web page if you choose the “Build Web Page...” option from
the “Build” menu.

WEB OUTPUT DIRECTORY

This is the name of the directory that will be used to accumulate the applet and its set of
associated resources when you choose the “Build Web Page...” option from the “Build”
menu.

COPYRIGHT®©2006 64 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

APPLET PROJECT SETTINGS

Project Settings il

General Applet | Source Files I Source Paths I Rezource Paths |
A0 Height: |480 _|::‘
r— Scalable Size
% width (100 =5 % Height: I'l] _%

—Argument

— Fixed Size
Wwiidth [l

h

.

Iadenosine

0K I Cancel | Apply | Help |

Figure 5.17: Applet Project Settings

FIXED SI1ZE

The fixed size width and height are used to set the size of the window when the applet
runs. In addition, this width and height are used to set the size of the applet in the web
page when you select “Build Web Page... Fixed Size” from the “Build” menu.

SCALABLE SIZE

The scalable size width and height are used to set the size of the applet as a percentage
of its frame in the web page when you select “Build Web Page... Scaled” from the
“Build” menu.

ARGUMENTS

Program arguments are a series of text strings that are passed into the applet when it
runs. This is a simple and convenient way to pass a small amount of text-based
information from a web page into an applet. This allows applets to be configured by
their associated web page. Once the arguments are passed into the applet, it is the
applet’s responsibility to interpret the arguments. Some applets respond to a variety of
program arguments while other applets may not respond at all to program arguments.

COPYRIGHT®©2006 65 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

SOURCE FILES PROJECT SETTINGS

Project Settings

General I Applet Source Files | Source Paths I Resource Paths |

— Main File:

— Files in Project

dna.amar
pdb.omar
pdb_atom.ores
pdb_molecule. ores

| Add || Hemawe || Set azhdaim |

x|

0K I Cancel | Apply | Help

Figure 5.18: Source Files Project Settings

This dialog box can be used to add files to a project, remove files from a project, and to
set a file as the main file in the project. The functions performed by this dialog box are
most often done using the Project Manager pane in the main Hypercosm Studio
window. However, if you have chosen to hide the Project Manager pane (using the
View menu), then you can use this dialog box instead to perform these functions.

SOURCE PATHS PROJECT SETTINGS

Project Settings

General I Applet I Source Files Source Paths | Fiezource Paths |

x|

K I Cancel | Apply | Help

Figure 5.19: Source Paths Project Settings

COPYRIGHT®©2006

66

HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

The Source Paths dialog box is used to add additional paths to the project where the
compiler can look for script files. When the compiler searches for a script file, it will look
for the file in the locations listed below searching the list in order from top to bottom:

1) Project directory
2) System source paths
3) Project source paths

RESOURCE PATHS PROJECT SETTINGS

Project Settings ll

General I Applet I Source Files I Source Paths Fesource Paths |

1] I Cancel | Spply | Help |

Figure 5.20: Resource Paths Project Settings

The Resource Paths dialog box is used to add additional paths to the project where the
compiler can look for resource files (textures, sounds, text, etc.) When the compiler
searches for a resource file, it will look for the file in the locations listed below searching
the list in order from top to bottom:

1) Project directory

2) System resource paths
3) Project resource paths

COPYRIGHT®©2006 67 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 5:
CREATING HYPERCOSM

ENHANCED WEB PAGES

LESSON OBJECTIVES:

= Know how to embed Hypercosm applets into web pages

= Know how to organize resources used by Hypercosm enhanced
web page

LESSON CONTENTS:

= Building and viewing web pages automatically

= Creating custom web pages

COPYRIGHT®©2006 69 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

ADDING AN APPLET TO A WEB PAGE

Once you’'ve created an OMAR program and an accompanying Hypercosm Studio
project, you can then create an applet and add it to your HTML file. What you should
read now depends on how you want to do this:

e If you want to add an applet to the template HTML file that was created when
you started a project, you can skip ahead to the “Building the Web Page
Automatically” section.

e If you want Hypercosm Studio to insert an applet automatically into an existing
web page, then read the “Preparing Your HTML File” section, followed by the
“Building the Web Page Automatically” section.

e If you want Studio to generate code that you can then insert by hand into an
existing HTML file, then read the “Inserting Hypercosm Code by Hand” section.

Note: to insert two different applets into the same page, you have to insert
them by hand because Studio cannot insert two different applets automatically.

PREPARING YOUR HTML FILE

Hypercosm Studio can insert an applet into your HTML page automatically.
Remember that Studio first makes a copy of your HTML page, and inserts the
applet into the copy, not into the original page.

To do this, you must first do two things:

1. Hypercosm Studio must know where to find the HTML file. If you haven’t
already added the HTML file to your project, follow the directions given in the
“Adding Files to Projects” section.

2. Hypercosm Studio must know where in the HTML file to add the HTML code
which links in your Hypercosm applet. The rest of this section explains how to
specify the location of that HTML code in an HTML file.

Follow these directions to specify the location of the Hypercosm applet in your
HTML file.

COPYRIGHT®©2006 70 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

1. Open the HTML file with a text editor or with your web design program.
2. Move to the spot in the HTML file where you want to call the Hypercosm applet.

3. Insert the following two lines of text at exactly the spot where you want the
applet to appear. These lines are case sensitive, so be sure to type them exactly as
they appear. If you place any text between the two lines, Hypercosm Studio will
delete it when it inserts the applet.

<!--HypercosmAppletBegin-->
<!--HypercosmAppletEnd-->

Note that if you have coded your HTML file by hand, you can just type in the

text as it appears here. If you are using a web design program, you must make
sure that your program won’t modify this text in any way, either because it
doesn’t understand it, or it thinks it’s unnecessary. Most web design programs
give you the capability to add comments or code that is used by other applications;
check the documentation that came with your web design program if you

are unsure how to do this.

Once you've inserted this text into your HTML file and saved the file, you are
ready to have Studio build the web page automatically.

BUILDING THE WEB PAGE
AUTOMATICALLY

To build the web page automatically, click on the “Build” menu and select “Build Web
Page...”. This will present a menu with two options as shown in Figure 6.1. Select
either “Scaled” or “Fixed Size”. You can also click the “Build Web Page” icon on the

toolbar to build a scaled web page as shown in Figure 6.2.

COPYRIGHT®©2006 71 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

::1 1:: Hypercosm Studio
File Edit ‘Wiews Project | Build System ‘Window Help

JJD Dwnﬁ |@ RunPlro]ect F& » P .
Run File Fé&
Stop Chrl+Ereak

Compile Projeck. F7
Recompile Project
Compile File Fa

Build Web Page... Scaled
Yiews Web Page Fixed Sized

Figure 6.1: The Build Web Page Menu

IDsEd @a% | 2e |5 Bk »)>e
Build Web Page

Figure 6.2: The Build Web Page Icon on the Toolbar

When Hypercosm Studio builds a web page using the following steps:

1. Compile the Applet
Hypercosm Studio compiles your program into HCVM format (Hypercosm’s
byte code format), and places the resulting HCVM file in your project’s directory
(or wherever you specified the “output file” be placed in your project’s settings).
Hypercosm Studio then copies that HCVM file and places the copy into the
“Web Output Directory” (which is the Website subdirectory by default). Note
that this effectively creates two HCVM files: one in your project directory, and
one in your web output directory.

2. Copy the Resource Files
Hypercosm Studio makes a copy of the project’s HTML file, and places that copy
in the subdirectory called /Project/Website/ where Project represents the name of
your project. Hypercosm Studio also copies any necessary sound or texture files
to the Project/Website subdirectory. If you’'d prefer that the applet, HTML, and
associated resource files be placed in a different directory, you can change the
default “Web Output Directory” in your project’s settings.

COPYRIGHT®©2006 72 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

3. Make the Web page
To make the web page, Hypercosm Studio opens the copy of the ”.HTML" file
and looks for the string that tells it where to insert the applet. The template
“.HTML" file that automatically generated when you created the project already
contains this string. If you are working with your own HTML, then you should
have already inserted this string yourself, using the directions given in the
“Preparing Your HTML” File” section above. Once Hypercosm Studio finds the
string, it inserts a reference to the Hypercosm applet file (known as an “applet
tag”) into the copy of your HTML file. To build a web page, choose Build > Build
Web Page > Scaled or Fixed Sized, or click on the Build Web Page button on the
toolbar. The settings for Scaled or Fixed Sized can be set by going to Project >
Settings > Applet. The “Fixed Size” setting will place the applet in your “. HTML”
file that will have a width and height of specified pixel values. The “Scaled”
setting will place the applet in the html file according to a percentage of the total
html page size. You can follow the progress of the build in the output pane of
Hypercosm Studio where messages are displayed indicating the build progress.
Once the process is complete, Hypercosm Studio displays a success message in
the output pane.

COPYRIGHT®©2006 73 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 6:
INTRODUCTION TO THE

OMAR LANGUAGE

LESSON OBJECTIVES:

Understand the unique language features of OMAR
Understand basic OMAR language structures

LESSON CONTENTS:

An OMAR overview

Hypercosm language requirements

Similarities and differences with other languages
Basic program structure

Elements of programming

Comments

Language vocabulary

Language formatting

The include directive

HYPERCOSM STUDIO TRAINING COURSE NOTES

AN OMAR OVERVIEW

There are perhaps hundreds of different programming languages. It probably seems like
the last thing that the world needs is yet another new programming language. If you are
a programmer, then this just means another new syntax to get used to and even worse,
another new set of semantic rules which may get confused with languages you already
know. But there are a number of very good reasons for OMAR. It was developed
because there simply are no other languages which have the features of safety,
architecture independence, general purposefulness, and expressiveness that are required
for today’s web based graphics applications. You may say that people have gotten along
just fine so far with “C”, the standard system programming language these days. Yes, it
is theoretically possible to write bug-free, somewhat understandable code in C, but in
practice, code written in C is almost always bug-ridden, difficult to read and
understand, and almost impossible to share and reuse. A better solution is clearly
needed.

HYPERCOSM LANGUAGE
REQUIREMENTS

To better understand the reasons for learning a new scripting language, it is instructive
to enumerate the requirements that lie behind the language design choices.

1. Security

The first requirement for any language that is going to be used to drive web based
content is security. The language must make it impossible to write malicious code
that can damage a user’s computer and modify their files. Because of this
requirement, all web-based languages are interpreted rather than compiled to run on
the hardware’s CPU. When a language is interpreted, a piece of software called an
interpreter checks each instruction before executing it to make sure that it is safe.
Any language that is compiled to run directly on the computer’s CPU can potentially
perform any operation because at the present time, no computer hardware (with the
exception of some research oriented LISP machines) has the capability of ensuring
run time security.

2. Platform Independence

Another requirement for languages that may be used in web applications is platform
independence. The language should have no preconceived notions that pertain to
the type of hardware that it will be used on.

COPYRIGHT®©2006 76 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

3. Ease of Use

Many content developers that will be using a language that is intended for 3D
graphics will tend to come from a graphics and web design background rather than
from a system programming background. This means that the language that is used

should be as friendly and easy to use as it’s possible for a programming language to
be.

4. Performance

A language that is intended to be used for real-time 3D graphics applications should
be as high performance as possible. Often, 3D simulations require computations to
simulate real time physics, compute 3D geometry, compute 3D transformations and
other computationally intensive tasks. All of these computations must be
performed in real-time to keep the simulation running at a reasonable frame rate.
This means that the interpreted language will need to be as high-performance as
possible.

SIMILARITIES AND DIFFERENCES WITH
OTHER PROGRAMMING LANGUAGES

In this section, we take a look at existing scripting and programming languages.

Security Platform Ease of Use Performance
Independence
C/C++ No No No Yes
C# Yes No No Yes
Java Yes Yes No Yes
Delphi / Pascal No No Yes Yes
Perl Yes Yes No No
Python Yes Yes Yes No

COPYRIGHT®©2006 77 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

Javascript Yes Yes Yes No
Ruby Yes Yes Yes No
Visual Basic Yes No Yes Yes
Smalltalk Yes Yes No No
Lisp Yes Yes No No
Tcl Yes Yes No No
OMAR Yes Yes Yes Yes

Figure 7.1: Programming Language Characteristics

Java C# Python]Sac‘;ial;t OMAR
Object-Oriented Yes Yes Yes No Yes
Static Type Checking Yes Yes No No Yes
Dynamic Arrays Yes Yes Yes Yes Yes
Xl::aeylrlultidimensional No Yes Yes Yes Yes
Optional Parameters No No Yes Yes Yes
Keyword Parameters No No Yes No Yes
Garbage Collection Yes Yes Limited Yes Yes
Reference Types No Yes No No Yes
Function Variables No Yes Yes Yes Yes

Figure 7.2: Programming Language Features

COPYRIGHT®©2006 78 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

Of all of the programming languages listed, the closest to OMAR are probably Java and
C#. These languages are all strongly typed, safe, and compiled. The main differences
between languages such as Java and C# and the OMAR language mostly involve syntax
and ease of use. As you can see in the following examples, system programming
languages such as Java and C# typically have a steep learning curve and are difficult to
learn for non-professional programmers.

public class hello {
static public void main(String[] argv) {
System.out.printin("Hello world!"™);
}

}
Figure 7.3: Hello World program in Java

EXAMPLE: "HELLO_WORLD.OMAR”

do say_hello;

verb say_hello is
write "Hello World!";
end;

Figure 7.4: Hello World program in OMAR

WHERE TO GO FOR MORE
INFORMATION ABOUT OMAR

In the following sections, we will provide a short introduction to the OMAR language.
This is intended to give the user enough information to get started in writing OMAR
scripts. However, this is by no means a comprehensive course on OMAR or
programming. To really understand it, you will need to spend some time writing code
in OMAR. For a detailed description of the programming language, there is a complete
language reference manual available from Hypercosm called “The OMAR
Programming Language”. You'll want to have this at your side as you become more
experienced in OMAR scripting and begin to tackle more advanced projects.

COPYRIGHT®©2006 79 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

BASIC PROGRAM STRUCTURE

Each OMAR program contains a single program header followed by one or more
program declarations.

THE PROGRAM HEADER

The program header tells where to begin executing the code. The program header
consists of the reserved word “do” followed by one or more identifiers separated by
commas. These identifiers are names of subprograms to execute. If more than one
subprogram is listed in the header then the subprograms will be executed in the order
that they are listed. Program headers can only be found in “.OMAR” files. “.ORES files
contain OMAR code, but with no program header since they can not be executed
directly. Note that there may be many subprograms declared in the body of the code
that are not listed in the header. All subprograms that are executed are called either
directly or indirectly from one of the subprograms listed in the header.

PROGRAM DECLARATIONS
Following the program header is a list of declarations. The declarations compose the

body of the program. Declarations fall into three general categories: data declarations,
type declarations, and subprogram declarations.

EXAMPLFE: “"PROGRAM_STRUCTURE.OMAR”

do taskl, task2; Il program header listing subprograms to run
verb taskl is Il first subprogram declaration
/I Program instructions go here
end;
verb task? is Il second subprogram declaration
/I Program instructions go here
end;

Figure 7.5: Basic Program Structure

COPYRIGHT®©2006 80 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

ELEMENTS OF PROGRAMMING

If you have never written a computer program before, then let’s take a minute to
examine some general characteristics of computer programming languages. If you
already know how to program, then you can move ahead to the next section,
“Comments”

DATA

The first component of computer languages is data. Everything that the computer can
manipulate or calculate is somehow encoded in some form of data. Data is defined as a
series of variable declarations.

integer counter = 0;

Figure 7.8: An Example Variable in OMAR

INSTRUCTIONS

The second component of computer languages is instructions. Instructions are what
describe all the actions and changes to data that occur when a program runs.
Instructions are defined as a series of “statements”.

counter = itself + 1;

Figure 7.9: An Example Statement in OMAR

DEFINITIONS

The third part of the computer language is definitions. Since we are writing code in a
high level language, some of our code is necessary only to clarify our meaning to the
compiler. These definitions are only part of the translation process and do not actually
get translated into either data which is operated on or instructions which are executed
by the computer. For example, a declaration of a user defined data type is simply a
template which is used by the compiler and neither holds data nor is executed by the
computer. Definitions are defined as a series of “types”.

enum day_of_the_week is Monday, Tuesday, Wednesday, Thursday, Friday;
Figure 7.10: An Example Type Definition in OMAR

COPYRIGHT®©2006 81 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

COMMENTS

It is also possible to add your own comments into the code. These comments are ignored
by the compiler, and therefore do not add any features to the program but simply make
the program easier to understand. In addition, comments are often used to temporarily
disable a piece of code that is not working properly without permanently erasing it from
the file. There are two types of comments in OMAR: line comments and block
comments.

LINE COMMENTS

The first type of comment is called a “line comment” because it spans only one line in
the program. Line comments are indicated by the forward slashes, “//”. When this
symbol is encountered, all text until the end of the line is ignored by the compiler, so
you can include any kind of text or symbols on the line as a comment.

/I This is a comment
integer a; /I This is a comment following a code declaration

Figure 7.6: Line Comments in OMAR

BLOCK COMMENTS

The next, more powerful form of comments is the “block comment”. Block comments
may span multiple lines and may even include other line or block comments. Block
comments are formed by enclosing the commented text by a pair of curly braces.
Generally, block comments should be used mostly for commenting out blocks of code
and not in cases where line comments may be used instead because a misplaced curly
brace can result in a large block of you program being commented out.

{ This is a block comment}

This is also a block comment

}
{

This shows how block comments can enclose other {block comments}
and also // line comments

}
Figure 7.7: Block Comments in OMAR

COPYRIGHT®©2006 82 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LANGUAGE VOCABULARY

The text of a computer program is made up of a variety of different components. The
text can be broken down into reserved words, identifiers, and special symbols.

RESERVED WORDS

Normally when you process human language, you rely on certain words having a
predefined meaning that is not subject to change. Computer languages also have words
that you make up yourself to name things and words that have a predefined,
unchangeable meaning. Those unchangeable words are called “reserved words”. The
complete list of reserved words for the OMAR language is listed below.

and dot is real vector
anim double its return verb
boolean else itself scalar while
byte elseif long shader with
case end mod shape

char false not short

complex for or subject

const imag parallel switch

Cross integer perpendicular then

div if picture true

do include question type

Figure 7.11: Reserved Words

IDENTIFIERS

The words in the computer program that are not reserved words are words that you
define yourself. These are called “identifiers”. An identifier is a word that is used to
name something. When new variables are created or new data types are defined, they
must be given names to identify them in a unique way. The rules for creating new
identifiers is that (1) they must not be a reserved word and (2) they must begin with a
letter and may be followed by letters, numbers, or the underscore character, “_". The
maximum length of identifiers is 256 characters, which should be plenty for most names.

Lowercase Uppercase Digits The Underscore

‘@ .7 ‘AL “0". 9" "_”

Figure 7.12: The Allowable Alphabet for Identifiers in OMAR

COPYRIGHT®©2006 83 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

In the example below, we show examples of valid identifiers in the OMAR language.

name
counter

number_of widgets
a

file_not_found

Figure 7.13: Valid Identifiers in OMAR

Identifier Reason Why Identifier is Invalid

24_bit_mode identifiers may not begin with a number

integer identifier is a reserved word

why? identifiers must be only letters, number, or underscore characters
24-bit-mode same reason as above

Figure 7.14: Invalid Identifiers in OMAR

CASE SENSITIVITY

Identifiers and reserved words are not case sensitive which means that capital letters
and small letters are not considered to be different. This means, for example, that the
identifier, “goo”, is the same as the identifier “GOQO”, “Goo”, or “GoO”.

SPECIAL SYMBOLS

In various places in the language, special symbols are required. These symbols may not
be used in any other parts of the program where they are not specifically required and
may not be used as parts of identifiers.

() [] ; : < > +
* / = A { } . : -

Figure 7.15: Special Symbols in OMAR

COPYRIGHT®©2006 84 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LANGUAGE FORMATTING

Like most modern languages, the OMAR language uses a “free-format”. This means that
the amount of whitespace between the keywords and identifiers makes no difference in
the meaning of the program. For example, the following two code examples have
different formatting, but have the exact same meaning and will produce the same
results. This is different from the scripting language Python, for example, where the
formatting actually impacts the program’s meaning.

while (counter < 10) do while (counter < 10) do counter = itself + 1; end;
counter = itself + 1;
end;

Figure 7.16: Free Formatting In OMAR

A SIMPLE EXAMPLE

To illustrate a few specific features and also what the OMAR language looks like in
general, we’ll look at a simple example.

EXAMPLE: "COUNTDOWN.OMAR”

do countdown;

Il This example counts down from 10 to 1
Il

verb countdown is Il A declaration of a subprogram
integer counter; Il A variable declaration
counter = 10; Il An instruction
while counter >0 do /I More instructions!

write counter, :
counter = itself - 1;
end;
write "blast-off! *, ;
end; /[countdown

Figure 7.17: A Simple Example

COPYRIGHT®©2006 85 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

THE INCLUDE DIRECTIVE

Creating a program that is contained inside of a single OMAR file is fine for small
programs, but when a program becomes more complex than the most basic example,
one should break the program into a series of files. The “include” directive is used to
include code from another file.

do example;

include "other_file.ores"; Il The file "other_file.ores" contains declarations that can be
Il referenced in this file now that the file has been included.

Figure 7.18: The Include Directive

NESTED INCLUDES

Often, we include a file that includes other files. This can be thought of as hierarchy
(tree) of files. When you include a file that includes other files, it has the effect of
including all of the files that are referenced in this tree. This makes it easy to include
quite a large number of files just by using a single include directive.

File3.omar File2.omar Filel.omar
do example3; do example2; do examplel;
include“file2.omar”; include “filel.omar”; integer a;
integer c; integer b; verb examplel is

a=0;
verb example3 is verb example2 is end;
a=0; a=0;
b=0; b=0;
c=0; end;
end;

Figure 7.19: Nested Includes

COPYRIGHT®©2006 86 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

SYSTEM INCLUDES

When files are included, they are usually either part of the current project or they are
tiles that are provided as part of Hypercosm Studio. These Hypercosm Studio files are
called “system includes”. They are located in the “system includes” directory,
“Hypercosm Studio/Includes/”. In order to cause the compiler to look in the “system
includes” directory for a file, preface the name of the file in the include directive with the
word “system/”.

EXAMPLE: "USING_TRIGONOMETRY.OMAR”

do use_trig;

include "system/trigonometry.ores"; Il The file "trigonometry.ores" contains the definition of the
I sine function used below along with other

verb use_trig is /I trigonometric functions

write “sin 30 = “, sin 30, ;
end;

Figure 7.20: A System Include Directive

NATIVE INCLUDE FILES

When perusing the list of .ORES include files that are provided, you may notice that
some of them are prefixed by the word “native”. These “native” include files are
special because they contain a series of “native” methods, variables, and type
declarations.

NATIVE DECLARATIONS

“Native” declarations are special because their implementation is provided not by the
script code in the file, but by “native” code that must exist inside the interpreter that
executes the applet. Because the implementation of these native entities is part of the
Hypercosm Player, these native definitions should not be tampered with.

native verb pause_applet
for integer milliseconds;
end;

Figure 7.21: An Example Native Method Declaration

COPYRIGHT®©2006 87 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

File Name
native_bitwise.ores
native_chars.ores
native_cursor.ores
native_data_container.ores
native_data_packer.ores
native_data_resources.ores
native_data_unpacker.ores
native_dates.ores
native_devices.ores
native_display.ores
native_exec_script.ores
native_images.ores
native_ip_address.ores
native_keyboard.ores
native_lights.ores
native_links.ores
native_materials.ores
native_math.ores
native_messages.ores
native_mouse.ores
native_nurbs_curve.ores
native_overlay_text.ores
native_picking.ores
native_proximity.ores
native_rendering.ores
native_sensing.ores
native_shape_colors.ores
native_shapes.ores
native_sounds.ores
native_tcp_client_socket.ores

native_tcp_server_socket.ores

native_textures.ores
native_time.ores
native_trans.ores
native_trans_stacks.ores
native_udp_socket.ores

native_untextured_materials.ores

native_viewing.ores

File Contents

Contains functions to manipulate data at the bit level
Contains native character functions

Contains the native mouse cursor changing method
Contains a container used by native data packing
Contains utilities for packing primitives to raw bytes
Contains a definition of downloadable data resources
Contains utilities for unpacking primitives from bytes
Contains a function for finding the current date
Contains utilities for dealing with native events
Contains native display properties and query methods
Contains a method to call Javascript in a web page
Contains the native image definition and methods
Contains a native IP address definition

Contains native keyboard querying methods
Contains the native lighting primitive definitions
Contains native URL based hyper-linking methods
Contains the native definitions of materials

Contains native math functions

Contains native message handling functions
Contains native mouse querying functions

Contains native functions for handling curves
Contains the native overlay text drawing method
Contains native utilities for doing picking

Contains native utilities for sensing proximity
Contains the native rendering properties

Contains native functions for collision detection
Contains native definitions of default shape colors
Contains native definitions of the primitive shapes
Contains native definitions of sounds

Contains a native client socket networking definition
Contains a native server socket networking definition
Contains native texture definitions

Contains native time functions

Contains native definitions of transformations
Contains native transformation stack utilities
Contains native UDP networking definitions
Contains native definitions for untextured materials
Contains native definitions of viewing paramaters

Figure 7.22: Native “.ORES” files

COPYRIGHT®©2006

38 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 7:

VARIABLES AND DATA TYPES

LESSON OBJECTIVES:

= Understand how to store data using the primitive data types

= Know what types of operations can be performed on each
primitive data type

LESSON CONTENTS:

= Variable declarations
= Primitive data types

= Constant declarations

COPYRIGHT®©2006 89 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

VARIABLES

Variables are used to store data which is used by a computer program. They are, in
effect, the representation of the world inside of the computer. Variables can be used to
represent such things as color, temperature, positions of objects - almost anything that
can be measured quantitatively or represented symbolically. Once data is stored in
variables, it can be retrieved, examined and changed. Each variable that we use must be
declared before we can use it. The variable declaration is where the variable is “born”
and given a name. The name given to the variable must be unique so that there is no
confusion as to which variable we are referring to. Some variables also have initial
values, while others remain undefined until they are given a value at some point in the
future. To create a new variable, we use the following format:

<data type name> <variable name> <optional initializer> ;

Figure 8.1: Variable Declaration Syntax

EXAMPLE:

integer counter = 0;

scalar temperature = 98.7;

double pi = 3.1415926535897932384;
scalar speed_of_light =3 E 8;

string name = "Willy";

vector location = <5 0 100>;

Figure 8.2: Example Variable Declarations

VARIABLE DECLARATIONS

Variable declarations can only be placed in certain locations in the program. Either they
will lie completely outside of any subprograms or they will be found at the very
beginning of the subprogram. A variable declaration will never be found right in the
middle of a group of statements. They always come at the beginning of a block of code.

COPYRIGHT®©2006 90 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

DATA TYPES

Each variable is said to be of a certain data “type”. The type determines what kind of
data the variable can store. Once the variable is created, it can never change its type. A
set of basic, or “primitive” data types is defined by the OMAR language. More complex
data types can be built up from these primitive types. The primitive data types that are
recognized by the OMAR programming language are the following: boolean, char, byte,

short, integer, scalar, double, complex, and vector. Generally, OMAR’s set of primitive

types is very similar to the primitive types available in Java or C#. The main exceptions
are (1) OMAR has a special “vector” type for efficiently handling 3D vector data and (2)
there is no special primitive string type as there is in Java. In OMAR, strings are
implemented as arrays of characters. A more detailed description of the properties of
each of these data types is given in the next section.

Type Name

Boolean
Char

Byte
Short

Integer
Long

Scalar

Double

Complex

Vector

Figure 8.3:

Contents
True Or False
Unicode Char

Signed Integer
Signed Integer

Signed Integer
Signed Integer

Single Precision
Floating Point
Number
Double
Precision
Floating Point
Number

A Pair of Scalars

A Triplet of
Scalars

Primitive Data Types

COPYRIGHT®©2006

Size

1 Bit

16 Bits / 2
Bytes

8 Bits / 1 Byte
16 Bits / 2
Bytes

32 Bits / 4
Bytes

64 Bits / 8
Bytes

32 Bits / 4
Bytes

64 Bits / 8
Bytes

64 Bits / 8
Bytes

96 Bits / 12
Bytes

91

Min Value
N.A
Chr(0)

-128
-32768

-2.147 Billion
-9.223

Quintillion
+/-1.402 E -45

+/-4.94 E -324

Same As Scalar

Same As Scalar

HYPERCOSM LLC

Max Value
N.A.
Chr(32767)

127
32767

2.147 Billion
9.223

Quintillion
+/-3.40 E 38

+/-1.79 E 308

Same As Scalar

Same As Scalar

HYPERCOSM STUDIO TRAINING COURSE NOTES

COMMONLY USED DATA TYPES

Although a variety of types are provided for completeness, in practice we find that the
vast majority of scripting code uses the following five data types:

boolean
char
integer
scalar
vector

Figure 8.4: Most Commonly Used Data Types

BOOLEAN

A boolean value is either true or false. These values are useful for describing such things
as whether something is on or off or any other situation where there are only two states.
The constants, true and false, are predefined and represent the two possible boolean
values. Two boolean values may be combined using boolean operators to yield a
boolean result. If an expression involving both ands and ors is evaluated, then the and
operator takes precedence over the or operator. For example, the expression, (a and b or
¢) is evaluated as ((a and b) or c).

Operator Purpose

and A logical operator that returns a true value only if both
operands are true.

or A logical operator that returns a true value if one or both
operators are true.

not A logical operator that returns a false value if the operand is

true and a true value if the operand is false.

Figure 8.5: Boolean Operators

COPYRIGHT®©2006 92 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE:

boolean done is false;

boolean overflow is (number > limit);
boolean error is (number = 0) and not found;
boolean fractional is (a <> trunc a);

Figure 8.6: Example Boolean Variable Declarations

CHAR

A char is a variable that is used to represent a single character symbol. Examples of
characters are the letters of the alphabet “a” through “z”, the capital letters of the
alphabet “A” through “Z”, the characters representing the digits “0” through “9”, and
special symbols such as the period, “.”, or the semicolon, “;”. To denote a particular
printable character, place the character’s printable symbol within double quotes. In
addition, a character may also be a special non printable symbol which has some special
meaning to the computer such as tab, space, or carriage return. Since these characters are
non-printable, they are specified by integer values according to the ASCII standard.
Non-printable characters can be created by passing an integer ASCII value into the “chr”
function. Commonly used characters and character manipulation functions are defined
in the file “chars.ores” which is located in the directory “Hypercosm

Studio/Includes/Utilities/Strings/”.

EXAMPILE:

char chis "A"; Il a printable character
char tab is chr 9; /I 'a non-printable character
char name[] is "Fred Freugelbugger"; Il'an array of chars

Figure 8.8: Example Char Variable Declarations

STRINGS OF CHARS

Often, we need a way of creating a variable to hold a list, or “string”, of characters.
Strings are implemented as arrays of chars. You can define a type “string” to stand for
the type “array of chars” so you don’t have to type the array indicating brackets each

"o

time. To assign a string as a unit, use the “is” operator. To assign a string character by

COPYRIGHT®©2006 93 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

“u_yr “u_rn

character, use the operator. When assigning strings using the operator, the
strings must be of the same size or else a run time error will result. For this reason, it is
usually preferable to use the “is” operator instead.

EXAMPLE:

type string is charf];

string type name is "Barney Squidsnorker";
string type names]] is ['Bob" "Mary" "Joe" |; Il An array of strings (equivalent to an array of
Il arrays of chars - char[][])

Figure 8.9: Example String Variable Declarations

INTEGER

Integers are the familiar counting numbers (1, 2, 3, etc.) and are useful for representing
things that can have only whole number values such as the number of characters in a file
or the number of objects in a list. Integers may be combined in expressions utilizing the
integer operands to yield an integer result.

Operator Purpose

+ Addition
Subtraction

* Multiplication

div Division

mod Modulo (Remainder)

- (Unary) Negation

Figure 8.10: Integer Operators

EXAMPLE:

integer i =0;

integer goo = -1000;

integer value = trunc 3.1415;
integer a = -value;
integerb=10+5*a;

Figure 8.11: Example Integer Variable Declarations

COPYRIGHT®©2006 94 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

SCALAR

Scalars are values that represent a continuous range of numbers, like height,
temperature, or radius, where there can be a theoretically infinite number of
intermediate values. In the mathematical world, these are known as real numbers.
Computer scientists refer to the method of representing real numbers in computers as
“floating-point” arithmetic. There are a variety of operators that can take integer and
scalar operands and produce a scalar result. Since integers are a subset of scalars, the
integers can automatically be converted to scalars where the situation warrants it.

Operator Purpose

+ Addition
Subtraction
Multiplication
/ Division

AN

*

Exponentiation
- (Unary) Negation

Figure 8.12: Scalar Operators

EXAMPLE:

scalar temperature = 32.0;
scalar infinity = 1e10;

scalar pi = 3.1415926;

scalar x=0;

scalar length = sqrt 2;

scalar a = (-pi / 4) + length * x;

Figure 8.11: Example Scalar Variable Declarations

COPYRIGHT®©2006 95 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

VECTOR

A vector is simply a set of three scalars. We can represent many concepts in the real
world by these triplets of three numbers. We say that the universe is three dimensional
because any point or direction can be described with respect to a certain frame of
reference by three numbers.

Operator Purpose
t Addition

Subtraction
* Multiplication by a scalar or a vector
/ Division by a scalar or a vector
dot Dot (scalar) product
Cross Cross (vector) product
parallel Parallel component of a vector
perpendicular Perpendicular component of a vector
- (Unary) Negation (reverse direction)

Figure 8.12: Vector Operators

EXTRACTING THE COMPONENTS OF A VECTOR

The three components of the vector are called the x, y, z components of the vector. They
can be extracted by using the dot product operator or by using the dot (.) operator.

Field of Vector Expression

X component V dot<100>or V.x
Y component Vdot<010>orV.y
Z component Vdot<001>o0rV.z

Figure 8.13: Extracting the Component of a Vector

EXAMPLE:

vector location = <10 -30 20>;
vector direction = location cross -<1 2 5>;
vector z_component = direction parallel <0 0 1>;

Figure 8.14: Example Vector Variable Declarations

COPYRIGHT®©2006 96 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

CONSTANTS

Constants are just like variables except that their values can not be changed. All
constants must be given an initial value which is permanent. Constants may be declared
any place that variables are declared. The format for declaring constants is similar to
variables.

const <data type name> <variable name> <optional initializer> ;

Figure 8.15: Constant Declaration Syntax

EXAMPLE:

const scalar freezing_point = 32;
const scalar pi = 3.14159265;

const scalar e = 2.718281828;
const boolean on is true, off is false;

pi = 3.14159265; Il Error - a constant may only be assigned by its initializer

Figure 8.16: Example Constant Declaration

COPYRIGHT®©2006 97 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 8:
SIMPLE STATEMENTS IN
OMAR

LESSON OBJECTIVES:

= Understand what statements are available in OMAR
= Understand how to use these statements

= Understand how to combine statements together

LESSON CONTENTS:

= Assignment statements
= Conditional statements

= Looping statements

COPYRIGHT®©2006 99 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

WHAT STATEMENTS ARE USED FOR

We’ve previously seen how to represent data by declaring variables of different types.
However, just representing data isn’t very interesting. In order to make the program
dynamic, we need to have commands or instructions to do something with that data.
The simplest units of these instructions are called “statements”. Statements are the core
building blocks that make up the instructions and algorithms that are the heart of any
computer program.

THE ASSIGNMENT STATEMENT

The most basic statement is the assignment statement. It is used to assign a value to a
variable. The value of the variable is specified by an expression. The expression may be
as simple as the name of another variable of the same type or as complex as a
mathematical formula involving many different terms. It is considered an error to assign
variables to themselves since this effectively does nothing. The basic form of the
assignment statement is as follows:

<variable> <assignment operator> <expression> ;

Figure 9.1: Assignment Statement Syntax

ASSIGNMENT OPERATORS

Unlike many other popular languages, in OMAR there are different assignment
operators used to assign different types. The first assignment operator, “="
assign numerical types and the contents of structures and arrays. Another assignment

,1s used to

operator, “is”, is used to assign symbolic types which can only assume a limited set of
values. These types include boolean, char, enumerated types, and references to

structures and arrays.

COPYRIGHT®©2006 100 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

Data Type Example Assignment Operator
Numerical Type short, byte, integer, long, =

scalar, double, complex,

vector
Symbolic Type boolean, char, or structure s

or object reference

Figure 9.2: Assignment Operators

integer a;
boolean done;

a=10;
done is false;

Figure 9.3: Assignment Statement Examples

EXPRESSIONS

Expressions are formed by evaluating a sequence of operators or functions and their
operands to yield a value as a result. The types of the operators will be checked to make
sure that they match the operators and functions that are used. The functions may be
built in functions or user defined functions.

Boolean Expressions done and not found
(@>b)
(a<>b)
done is true;
a=5
Numerical Expressions atbh
sgrt (a*a + b*b)

Figure 9.4: Example Expressions

COPYRIGHT®©2006 101 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

OPERATOR PRECEDENCE

The order in which the operators are applied depends upon the rules of precedence.
Operators with the highest precedence will be applied first followed by operators of
lower precedence. Operators of the same precedence will be applied from left to right.
The precedence rules can always be overridden by adding parentheses around the
expressions that are to be evaluated first. The operator precedence used in OMAR is
similar to other languages. See the OMAR language reference for details.

2<3<4*5 =(2<3)and (3 < (4*5)) = true
4*5+3*3 = (4*5) +(3*3) = 29
4212 =4*(2h2) = 16
true and false or true = (true and false) or true = true

Figure 9.5: Operator Precedence

PRONOUNS: ITS AND ITSELF

In English, we find that we frequently need to refer to an idea repeatedly. To do so, we
use a pronoun to substitute for a thing that was previously mentioned. In OMAR, we
have introduced two pronouns, “itself” and “its” to accomplish this same purpose. The
pronoun “itself” is used to refer to whatever the most previous expression referred to.
The pronoun, “its”, is used with structures and is used to refer to a field of a structure
denoted by an expression.

EXAMPLE:

integer i = 1, iterations = 0;
boolean parity is false;
linked type chain is linked_list;

while some chain do
i = itself * 2;
iterations = itself + 1;
parity is not itself;
chain is its next;
end;

Figure 9.6: Pronoun Examples

COPYRIGHT®©2006 102 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

THE “WRITE” STATEMENT

One of the most common things that we need to be able to do is to write out messages
that can tell us about the status of the running applet. These messages are used to show
the flow of execution through the program or show the status of variables. The “write”
statement is provided for this purpose. When the “write” statement executes, the output
will be displayed in the “Output” window at the bottom of the Hypercosm Studio user
interface. These output statements will not be visible when the applet runs outside of
Hypercosm Studio. The “write” statement can take arguments of all of the primitive
types, char, byte, short, integer, long, scalar, double, complex, and vector plus arrays of
characters, which are also known as “strings”. The form of a “write” statement is as
follows:

write exprl, expr2, expr3, ... exprN ; /I Where exprl ... exprN are
Il expressions which evaluate to
Il'a primitive type or an
Il array of chars (string)

Figure 9.7: “Write” Statement Syntax

WRITING A NEW LINE

If the write procedure is called with no arguments, then it will print a new line character.
Usually, when output messages are printed, we want to go to the next line at the end of
the message, so usually the last argument in a “write” statement is an empty argument.

EXAMPLE:

integer N = 10, a = 64;
scalar b = 64;
complex ¢ =<4 1>;

write "hello world!", ;
write "the value of the variable, N, is ", N, ;
write "the values of a, b,andcare ", a,",", b, ",and ", c, ;

Figure 9.8: “Write” Statement Examples

COPYRIGHT®©2006 103 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

CONDITIONAL STATEMENTS

One of the most basic things that a computer can do is test for some condition and take a
different course of action depending on the outcome. Frequently, conditionals are
nested in a complex sequence. If the execution of the program is represented as a flow
chart, then the conditionals occur whenever there is a “fork in the road” or a place where
the path branches into multiple paths.

THE “IF-THEN” STATEMENT

The most basic form of conditional is the “if-then” statement. The “if-then” statement
relies upon solving a boolean expression that determines whether or not a certain action
is taken. If the boolean expression evaluates to true, then the statements are executed. If
the boolean expression evaluates to false, then nothing happens and the computer goes
on to the next statement. The basic form of the “if-then” statement is as follows:

if <boolean expression> then
<declarations>
<statements>

end;

Figure 9.9: “If-Then” Statement Syntax

EXAMPLE:

if (sqrb-4*a*c<0)then
write "no roots found", ;
end;

Figure 9.10: “If-Then” Statement Example

THE “IF-THEN-ELSE” STATEMENT

A more complex form of the “if-then” statement is the “if-then-else” statement. This
statement works by deciding upon one of two possible courses of action based on the
value of the boolean expression. If the boolean expression evaluates to true, then the first
block of statements is executed, else, the second block of statements is executed. The
form of the “if-then-else” statement is as follows:

COPYRIGHT®©2006 104 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

if <boolean expression> then

<declarations1>

<statements1>
else

<declarations2>

<statements2>
end;

Figure 9.11: “If-Then-Else” Statement Syntax

THE “IF-THEN-ELSEIF” STATEMENT

Another useful form of the “if” statement is used when we want to perform a series of
tests and execute some statements as soon as we find a condition that evaluates to true,
otherwise, keep testing. This statement is called the “if-then-elseif” statement. The form
of this statement is as follows:

if <boolean expressionl> then
<declarations1>
<statements1>

elseif <boolean expression2> then
<declarations2>
<statements2>

elseif <boolean expressionN> then
<declarationsN>
<statementsN>

end;

Figure 9.12: “If-Then-Elseif” Statement Syntax

THE “lF-THEN-ELSEIF-ELSE” STATEMENT

The last possible form of the “if-then” statement is created by fitting an “else” clause
onto the “if-then-elseif” statement. This is useful when we want to perform a series of
tests that each execute some statements if true, and if none of the conditions are true,
then execute the statements inside the else block. This is the “if-then-elseif-else”
statement, which is illustrated below:

COPYRIGHT®©2006 105 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

if <boolean expression1> then
<declarations1>
<statements1>

elseif <boolean expression2> then
<declarations2>
<statements2>

elseif <bhoolean expressionN> then

<declarationsN>

<statementsN>
else

<declarations>

<statements>
end;

Figure 9.13: “If-Then-Elseif-Else” Statement Syntax

LOOPING STATEMENTS

Probably the most powerful construct in computer programming is the loop. A loop is a
means of repeatedly executing some action. The looping structures provided enable the
program to do something a fixed number of times or until a certain condition is satisfied.

THE “WHILE” STATEMENT

The “while” statement is used to repeatedly execute a sequence of statements as long as
a particular condition holds true. It is used whenever we don’t know how many times
the loop will have to be executed. This kind of loop is used for things like: while not
finished, do task; while no character has been found, read keyboard, etc. The condition
is tested for at the beginning of the loop, before any statements are executed, so it is
possible for the statements not to be executed at all.

while <boolean expression> do
<declarations>
<statements>

end;

Figure 9.14: “While” Statement Syntax

COPYRIGHT®©2006 106 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE:
integer i = 10;
while (i > 0) do
write "i =", i, ;
i = itself - 1;
end;

Figure 9.15: “While” Statement Example

THE “FOR” STATEMENT

The “for” statement is used whenever we want to execute the statements of a loop a
fixed number of times. The variable that is used to count the number of iterations in the
loop must be of an integral type and may be used in expressions inside of the loop but
its value may not be changed. The start expression and end expression must also
evaluate an integer.

for <type> <counter> <assignment_operator> <start expr> .. <end expr> do
<declarations>
<statements>

end;

Figure 9.16: “For” Statement Syntax

EXAMPLE:

for integer counter =1 .. 10 do
write "counter =", counter, ;
end;

Figure 9.17: “For” Statement Example

COPYRIGHT®©2006 107 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 9:
PROCEDURES AND

FUNCTIONS

LESSON OBJECTIVES:

= Understand the different types of subprograms
= Understand how to declare parameters for a subprogram
= Understand the different types of parameter declarations

= Understand how to call a subprogram and how to pass in values
for the parameters

LESSON CONTENTS:

» Procedures and functions as “black boxes”
= Scoping

= Parameters

= Mandatory Parameters

= Optional Parameters

= Keyword Parameters

= Reference Parameters

= Scoping Modifiers

COPYRIGHT®©2006 109 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

THE BLACK BOX PHILOSOPHY

Subprograms are a way of breaking down code into manageable pieces. In order to
solve any complex problem, we must find ways of breaking down the task into
manageable units. This philosophy is exploited tirelessly in science and computers. The
idea is often illustrated by visualizing each component of the solution as a black box,
where we know what goes into the box and what comes out but have no knowledge of
what goes on inside. Ideally, we should have no need to know what goes on inside the
black box.

THE CONCEPT OF SCOPING

Just as an engine has a number of internal parts that are necessary for it to work but are
not used by any other parts of the car, a subprogram can also have its own data, data
types, and even its own subprograms which are not accessible to the rest of the program.
If something is accessible from a particular place in the program, then we say that it is
“visible”. All the things which are visible to a subprogram comprise the “scope” of the
subprogram. The visibility of program declarations is determined by the textual
arrangement of the program. Each time we begin a new subprogram, we can declare
new things which are not visible to the rest of the program. These things are referred to
as “local” because they can only be accessed within that subprogram. In addition to the
things in its own local scope, a subprogram can also have access to things which are
declared in the scopes which enclose itself. If two variables with the same name but from
different scopes are visible, then the one with the closer scope takes precedence and the
others are invisible. Usually, subprograms will not be nested, so they will have access
only to their own scope and to the global scope.

COPYRIGHT®©2006 110 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE: “"SCOPING.OMAR”

do a, b;

Il Global scope
i
integer i =0;

verb a

is Il Beginning scope of a -scopes visible: global scope, scope of a
Il
integer j;

/I Statements of a
i
=i
end; // Ending scope of a

?/Serb g Il Beginning scope of b - scopes visible: global scope, scope of b (but not a)
ﬁneger k;
verb ¢
is /I Beginning scope of ¢- scopes visible: global scope, scopes of b and ¢ (but not a)
{:neger l;

/I Statements of ¢

I
=i
k=1
end; /[Ending scope of ¢
Il Statements of b
]
k=i

end; //Ending scope of b
Figure 10.1: Scoping

COPYRIGHT®©2006 111 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

PROCEDURES

Procedures are subprograms that are called upon to perform a particular subtask. In the
OMAR language, procedures are called “verbs”. There are two parts to using
procedures. First, the procedure must be declared. The declaration tells what the
procedure does, how it is supposed to do it, and how to call the procedure. Once the
procedure is declared, we can call it to run the code inside of the procedure. To call a
simple procedure, simply state the name of the procedure.

verb <procedure name> is
<declarations>
<statements>
end;

Figure 10.2: Simple Procedure Declaration Syntax

<procedure name> ;

Figure 10.3: Simple Procedure Call Syntax

EXAMPLE: “"PROCEDURES.OMAR”

do write_averages;
integer nl, n2;

verb write_average is Il procedure declaration
write "average =", (n1 +n2)/ 2, ;
end; /[write_average

verb write_averages is
nl=10;
n2 = 30;
write_average; Il procedure call

nl = 15;

n2="7;

write_average; Il procedure call
end; //write_averages

Figure 10.4: Simple Procedure Example

COPYRIGHT®©2006 112 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

FUNCTIONS

Often, subprograms are used to do a small part of a larger calculation. In these instances,
it is desirable to have the subprogram return a value. This type of subprogram is known
as a function. In the OMAR language, functions are called “questions”. Function
declarations are similar to procedure declarations except that we must precede the
declaration with the name of the type of data to return. Also, inside of the body of a
function, we must include an “answer” statement to tell the function to end and return a
value to the caller. The “answer” statement in a function must be followed by an
expression of the same data type as the type that is returned by the function. The last
statement in a function must be either an answer statement or a conditional statement
where all conditions end in an answer statement.

<return type> question <function name>
is

<declarations>

<statements>
end;

Figure 10.5: Simple Function Declaration Syntax

EXAMPLE: "TFUNCTIONS.OMAR”

do find_averages;
integer n1, n2;

scalar question get_average is Il function declaration
answer (nl1 +n2)/2; Il answer statement
end; //get average

verb find_averages is
nl = 10;
n2 = 30;
write "average =", get_average, ; /I function call

nl=15;

n2="7;

write "average =", get_average, ; Il function call
end; //find_averages

Figure 10.6: Simple Function Example

COPYRIGHT®©2006 113 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

PARAMETERS

We have seen how to break the program down into manageable parts with
subprograms. What is needed is a way for all of these individual pieces to be neatly
connected so that the pieces are independent but work together. Parameters are the
means by which the various parts of the program are interconnected. They allow us to

pass data into and out of each subprogram. They are like the wiring connecting a series
of black boxes.

THE PROBLEM WITH GLOBAL
VARIABLES

The black box analogy of program structure assumes that there is some way to get the
data into the black box and out of the black box. In our previous examples, we used
global variables to communicate with the subprogram. Although this works fine, it is
not considered good programming style because:

1) It's not easy to tell how to use the subprogram
We can’t tell how to interface with the subprogram simply by looking at the
header of the subprogram. Instead we must actually examine the code to see how
it works.

2) The subprogram relies on the existence of global data.
A subprogram that relies upon global data can’t stand alone as its own unit. If
we change the definition of the global data, then the subprogram will break. This
violates the primary objective of black boxes that we are trying to achieve.

THE SUBPROGRAM INTERFACE:
PARAMETERS

The solution to our problems is to specify a way to send values to the subprogram and
receive values back to the main program. This is done with parameters. Parameters are
simply variables that belong to the subprogram and are changed each time the
subprogram is entered to run it with different initial conditions. Parameters are declared
immediately after the subprogram name and before the local declarations. Parameters
are declared and used in the same way with any type of subprogram (procedures or
functions).

COPYRIGHT®©2006 114 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

verb <procedure name>
<parameter declarations>

is
<declarations>
<statements>

end;

Figure 10.7: Parameter Declaration Syntax

DIFFERENT TYPES OF PARAMETERS

One of the main differences between OMAR and other languages is that it provides a
variety of different ways of passing parameter values. In the next few sections, we will
examine these different parameter types in detail. The following description provides a
brief overview of some of the unique parameter passing styles available in OMAR.

OPTIONAL PARAMETERS

In many cases, there are logical default values for parameters to have. For example, it’s
natural for a sphere to have a default radius of 1. Another example might be to define a
car object with doors that open and close depending upon the value of a parameter.
Since it’s logical to have the doors default to the closed position, this is a good choice for
an optional parameter.

KEYWORD PARAMETERS

In some cases, the procedure call can be stated very naturally by relying on the fact that
the values of certain parameters are often proceeded by keywords. For example, if we
want to create an arrow, it’s natural to say “arrow from <here> to <there>" where the
values of the endpoints of the arrow are indicated by the keywords “from” and “to”.
When we call the subprogram, we expect to find the values of the endpoints in the
places that are indicated by the keywords “from” and “to”.

RETURN VALUE PARAMETERS

The parameter is like an access road to the procedure. Sometimes, we only need a one
way street with data going into the procedure but not returning. In other circumstances,
we need a two way street where data can be passed into and return from the procedure.

COPYRIGHT®©2006 115 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

MANDATORY PARAMETERS

As their name implies, mandatory parameters are parameters that must be supplied to
the subprogram. Mandatory parameters are the standard way of passing parameters in
most standard programming languages such as C, C++, or Java. An example of
mandatory parameters is the parameters that are used in the built in function, sin. To
call the sin function, you must supply an argument immediately following the name of
the function. According to the declaration of sin, the argument must take a scalar value.
If no argument is supplied, an error message will be issued. Mandatory parameters are
used whenever there is no logical choice for default values for the parameters.

DECLARATION OF MANDATORY PARAMETERS

Mandatory parameters are specified in the subprogram declaration by listing their
declarations immediately following the name of the subprogram. There is no limit to the
number of parameters that may be declared.

verb <procedure name>
<type name> <parameter name> ;

<declarations>
<statements>
end;

Figure 10.8: Mandatory Parameter Declaration Syntax

ASSIGNMENT OF MANDATORY PARAMETERS

When the subprogram with mandatory parameters is called, a list of expressions is
expected following the name of the subprogram. The expressions must evaluate to the
proper type to be assigned to the parameters that they correspond to (for example,
integer expressions for integer parameters, string expressions for string parameters etc).
The number of expressions for parameter values in the procedure or function call must
match the number of parameter declarations in the procedure or function declaration.

<procedure name> <parameter values> ;

Figure 10.9: Mandatory Parameter Assignment Syntax

COPYRIGHT®©2006 116 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE: "MANDATORY_PARAMS.OMAR”

do find_averages;
include "system/math.ores";

scalar question get_average

integer a, b; Il mandatory parameter declaration
iS

answer (a+h)/2;
end; //average

verb find_averages
is
scalar a;

a = get_average 30 40;
a = get_average (round 3.5) 40;
a = get average -10 40;

a = get_average 30 .5; I Compile Error! - .5 is not an integer
a = get_average (sqrt 10) 40; Il Compile Error! - sgrt 10 is not an integer
a = get_average 30 40 15; I/l Compile Error! - too many parameters

end; //find_averages

Figure 10.10: Mandatory Parameter Example

- -

<
NOTES:

Most mathematical functions use mandatory parameters because there usually aren’t
any default values that make sense for these types of functions.

EXAMPLE:

scalar question cos
scalar angle;
end;

X = c0s 60;

COPYRIGHT®©2006 117 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

OPTIONAL PARAMETERS

Optional parameters are useful when it is not necessary to always specify all of the
parameters. For optional parameters, default values must be specified in the parameter
declaration. If parameter values are not specified in the procedure call, then the
parameter will take on the default values specified in the parameter declaration.

DECLARATION OF OPTIONAL PARAMETERS

To signify the beginning of the optional parameters section, add the keyword, “with” at
the end of the mandatory parameters section followed by the declarations of the
optional parameters. All optional parameter declarations must be followed by an
initializer that assigns a default value.

verb <procedure name>
<mandatory parameter declarations>

with

<type name> <parameter name> <initializer> ; Il optional parameter declarations
is

<declarations>

<statements>
end;

Figure 10.11: Optional Parameter Declaration Syntax

ASSIGNMENT OF OPTIONAL PARAMETERS

Optional parameters are assigned by following the name of the procedure by the
keyword “with” and then listing a number of parameter assignment statements until the
keyword “end” is given.

<procedure name> with
<parameter name> <initializer> ;

end;

Figure 10.12: Optional Parameter Declaration Syntax

COPYRIGHT®©2006 118 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE: “"OPTIONAL_PARAMS.OMAR”

do init_arrays;

verb init_array

integer array[]; I Mandatory parameter for table
with

integer value = 0; Il Optional parameter for table contents
is

for each integer i in array do

i = value;

end;

end; //init_array

verb init_arrays
is
integer table[1..10];

init_array table; Il Fill table with Os (default value)
init_array table with I Fill table with -1s

value = -1;
end;

end; /[init_arrays

Figure 10.13: Optional Parameters Example

-

&
NOTES:
Many graphical primitives use optional parameters because they often have default

parameter values. For example, a sphere has an optional parameter for the radius
that has a default value of 1.

COPYRIGHT®©2006 119 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

MANDATORY KEYWORD PARAMETERS

Sometimes it is desirable to require extra words to be inserted into the procedure call to
make the procedure call more readable. These extra words are known as keyword
parameters.

DECLARATION OF MANDATORY KEYWORD
PARAMETERS

Mandatory keyword parameters are declared just like the mandatory parameters except
that before the variable declaration comes one or more special identifiers that are the
keywords. Any identifier can be used as a keyword so long as it’s not a reserved word.
The keywords signify that the value of the parameter will follow.

verb <procedure name>
<keyword> <type name> <parameter name> ;

<declarations>
<statements>
end;

Figure 10.14: Mandatory Keyword Parameter Declaration Syntax

ASSIGNMENT OF MANDATORY KEYWORD
PARAMETERS

To assign values to keyword parameters, state the keyword followed by an expression
which can be evaluated to provide a value for that keyword. The parameter keyword /
value pairs must be given in the order as they are listed in the declaration.

<procedure name> <keyword / parameter value pairs> ;

Figure 10.15: Mandatory Keyword Parameter Assignment Syntax

COPYRIGHT®©2006 120 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE:
“MANDATORY_KEYWORD_PARAMS.OMAR”

do init_arrays;

verb init_array
integer array[]; /I Mandatory parameter for table
to integer value; I Mandatory keyword parameter for table contents (no default)

for each integer i in array do
i = value;
end;
end; /[init_array

verb init_arrays is
integer table[1..10];

init_array table to 0; I Fill table with Os
init_array table to -1; II'Fill table with -1s
end; /[init_arrays

Figure 10.16: Mandatory Keyword Parameters Example

'] y

=
NOTES:

Mandatory keyword parameters are used quite frequently in the definition of various
graphical utility functions because they make the graphics code very easy to read. For
example a number of the transformation methods use keyword parameters effectively:

EXAMPLE:

verb rotate
by scalar angle;
around vector axis;
end;

rotate by 60 around <0 0 1>;

COPYRIGHT®©2006 121 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

OPTIONAL KEYWORD PARAMETERS

Optional keyword parameters are like a hybrid between the optional parameters and the
keyword parameters previously discussed. Optional keyword parameters are used
when it is desirable to use keywords in the procedure call but not to require all the
parameters to be given. In this case, we can use the presence of the keyword to signify
that we are overriding the default parameter value by providing a new value. Since it is
possible that optional keyword parameters are not assigned in the procedure call, they
must always have default values.

DECLARATION OF OPTIONAL KEYWORD
PARAMETERS

Optional keyword parameters are declared just like the mandatory keyword parameters
except that they are given initializers. Optional keyword parameters are declared by
giving the keyword followed by the variable declaration followed by the initializer.

verb <procedure name>
<keyword> <type name> <parameter name> <initializer> ;

<declarations>
<statements>
end;

Figure 10.17: Optional Keyword Parameter Declaration Syntax

ASSIGNMENT OF OPTIONAL KEYWORD
PARAMETERS

The optional keyword parameters are assigned like the mandatory keyword parameters
except that the order that the keywords and parameters values come in is flexible and
any or all of the parameter assignments may be omitted.

<procedure name> <keyword / parameter value pairs> ;

Figure 10.18: Optional Keyword Parameter Assignment Syntax

COPYRIGHT®©2006 122 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE:
“OPTIONAL_KEYWORD_PARAMS.OMAR”

do init_arrays;

verb init_array
integer array[]; /I Mandatory parameter for table
to integer value = 0; Il Optional keyword parameter for table contents (with default)

for each integer i in array do
i = value;
end;
end; /[init_array

verb init_arrays
is
integer table[1..10];

init_array table; II'Fill table with 0s (the default value)
init_array table to 0; I Fill table with Os
init_array table to -1; II'Fill table with -1s

end; /linit_arrays

Figure 10.19: Optional Keyword Parameters Example

COPYRIGHT®©2006 123 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

REFERENCE PARAMETERS

It is sometimes necessary to return data from a subprogram. This is most easily done
using reference parameters. Reference parameters in OMAR are similar to reference
parameters in C++ or “var parameters” in Pascal or Delphi. Note that Java has no
analogue to reference parameters since Java has no generalized reference or pointer data

type.

DECLARATION OF REFERENCE PARAMETERS

Reference parameters are declared just like mandatory parameters except that the
reserved word, “reference” precedes the parameter name. When this is done, the
parameter becomes a two-way link to the variable which is passed in so any changes
that are made to the parameter will be reflected in the variable when the procedure is
finished executing.

verb <procedure name>
<type name> reference <parameter name> ;

<declarations>
<statements>
end;

Figure 10.20: Reference Parameter Declaration Syntax

ASSIGNMENT OF REFERENCE PARAMETERS

Reference parameters are also assigned similarly to mandatory parameters, with the
parameter values immediately following the subprogram name. One slight difference
between reference parameters and mandatory parameters is that a variable must be
passed in to the reference parameter instead of an expression. For example, let’s say we
have a procedure named “increment” that takes an integer reference parameter and
adds 1 to its value. In this case, the procedure call “increment a;” would be valid
assuming that a is an integer variable. The procedure call “increment a + 1;”, however,
would not be valid because we need the name of a variable to place the returned value
and “a +1” is not a valid name of a variable.

<procedure name> <variable names> ;

COPYRIGHT®©2006 124 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

Figure 10.21: Reference Parameter Assignment Syntax

EXAMPLE: "REFERENCE_PARAMS.OMAR”,

do swap_numbers;

verb swap_integers
integer reference i;
integer reference j;

integer k = i;

i=j;
i=k
end; //swap

verb swap_numbers
is
integera=1,b=2;

wiite "a, b=",a,"", b, ;
swap_integers ab; /I note that after this call, the values of a and b will be changed

write "a,b=",a,", ", b, ;
end; /[swap_numbers

Figure 10.22: Reference Parameters Example

COPYRIGHT®©2006 125 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

SCOPING MODIFIERS

Whenever we have the concept of scoping and local variables, there is always the
possibility that we may declare a new variable in the local scope that has the same name
as a variable in an enclosing scope and therefore hides this other variable. This
phenomenon is sometimes known as “variable shadowing”.

Variable shadowing can become a problem particularly when using optional parameters
because the parameter values are assigned by name. If we want to assign a parameter
the value of a different parameter in a different scope with the same name, then we have
a problem.

In order to overcome this difficulty, there are two things that may be done. First, we
might choose to rename the local variable to avoid the ambiguity altogether. Second, we
may precede the variable name by a scoping modifier in order to bypass the most local
scope and refer to the hidden scope. There are two scoping modifiers that may be used
for this purpose.

THE “GLOBAL” SCOPING MODIFIER

The first scoping modifier, the keyword “global”, is used whenever we want to bypass
the local scope and refer to a variable in the “global” or outermost scope.

EXAMPLFE: “GLOBAL_SCOPING.OMAR”

do global_scoping;

integer i = 5; /I Global i

yerb global_scoping

° integer i = 10; Il Local i “shadows” global i
write "i=",1,; II'Will write the value of local i (10)
write i =", global i, ; Il Will write the value of global i (5)

end; // global_scoping
Figure 10.23: Global Scoping Modifier Example

COPYRIGHT®©2006 126 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

THE “STATIC” SCOPING MODIFIER

The second scoping modifier is used only in procedure or function calls when we are
assigning optional or optional return parameters. In this case, the need is to bypass the
scope of the procedure being called (the dynamic scope) and refer instead to the context
of the place in the program where the procedure call is made (the static scope). For this,
we use the scoping modifier, “static”.

EXAMPLE: “STATIC_SCOPING.OMAR”

do static_scoping;

verb write_integer with
integer i = 0;
is
write "i =", i, ;
end; /[write_integer

verb static_scoping is

integeri=1; Il Local i
write_integer with /I Entering scope of write_integer

i = static i; Il Bypass scope of write_integer to get at local i (value = 1)
end; Il Leaving scope of write_integer

end; //static_scoping

Figure 10.24: Static Scoping Modifier Example

COPYRIGHT®©2006 127 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 10:
SIMPLE GRAPHICS

PROGRAMMING IN OMAR

LESSON OBJECTIVES:

= Understand how to define simple 3D graphics in OMAR

LESSON CONTENTS:

= Include files for 3d graphics

= New verb types — shape, picture, and anim
= Changing the view

= Using 3D coordinates

= Changing shape parameters

= Defining and using shapes

= Adding simple interactivity

COPYRIGHT®©2006 129 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

INCLUDE FILES FOR 3D GRAPHICS

An include statement is used to import OMAR code from other OMAR files. Producing
3D graphics requires the inclusion of a set of graphical resources that provide the
foundation for 3D graphics. All of the essential graphics resources can be included
simply by including the single file “3d.ores”, which is located in the directory
“Hypercosm Studio/Includes/”. All OMAR script files that perform 3D graphics will
begin with the statement “include system/3d.ores” immediately following the header
statement. Other include statements may be added to include additional resources, but
almost all 3D OMAR programs will begin with this statement.

EXAMPLE:
do example; /I Program header
include "system/3d.ores"; /I System includes needed for 3D

Figure 11.1: Include Directive Required for 3D

File name Purpose

3d.ores This is the “root” level include for all 3d graphics and
contains additional include statements to include
definitions for most commonly used 3D features.

native_shapes.ores This file contains definitions of the native shapes that are
built-in to the Hypercosm system such as the mesh, block,
sphere, cone, etc.

native_rendering.ores This file contains definitions of native rendering attributes
such as rendering mode, facets, material, and color.
native_lights.ores This file contains definitions of the different types of native

lights such as distant lights, point lights, and spot lights.
native_viewing.ores This file contains definitions of viewing parameters such as
eye point, lookat point, and field of view.

Figure 11.2: Some Standard Include Files Used for 3D

COPYRIGHT®©2006 130 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

GRAPHICS EXTENSIONS TO OMAR:
SHAPES, PICTURES, AND ANIMS

To make the graphics programming easier to understand, a variety of graphical
subprogram types have been added as extensions to the language. They are syntactically
identical to procedures but have been given different names to reflect the different jobs
which they do. The procedural extensions are shapes, pictures, and anims. These
subprograms are like procedures because they describe actions to take place but do not
return any values. These actions can be viewed as “create this shape”, “draw this
picture” and “animate this sequence of pictures”.

Procedure Type Purpose

shape A shape is a procedure that describes how
to create a new geometric shape

picture A picture is like a shape, but it describes a
scene that is rendered when the picture is
called.

anim An anim is a procedure that repeatedly

calls a picture that changes in order to give
the appearance of motion.

Figure 11.3: New Graphical Procedure Types

A SIMPLE EXAMPLE

At a bare minimum, an OMAR graphics file requires a picture. The picture is what
causes a window to open and a scene to be rendered. Running a picture is the only way
to display something on the screen using the Hypercosm system. Even if the header
statement runs an anim, the anim must in turn run a picture in order to produce an
image. Inside a picture are shape statements that indicate what objects are to appear in
the image. Hypercosm will only display a shape if it is called inside a picture
declaration.

picture <name> is
<shapes>
end;

Figure 11.4: A Basic Picture Declaration

COPYRIGHT®©2006 131 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE: “SIMPLE.OMAR”

do simple;

include "system/3d.ores";
include "system/lighting.ores";

picture simple

is
block;
I lighting used in the scene
i
default_lights;
end;

Figure 11.5: A Simple Graphics Program

CHANGING THE VIEW

While Hypercosm graphics do appear on a 2D computer screen, the Hypercosm world is
truly three-dimensional. The size of objects on the screen is determined by a
combination of their intrinsic size and the properties of the camera that is used to view
them. Objects appear large on the screen if the camera is placed relatively close to them,
and objects appear to be very small if the camera is relatively far away. Any object that
is outside of the camera’s field of view won’t appear on the screen at all. In the previous
example, the view of the scene that was used was defined by the default parameters that
are defined by the Hypercosm “include” files. In most cases, we want to set up a view
that’s more appropriate for our model. This easiest way to do this is simply to set the
system variables, eye, lookat, and field_of_view. These variables are defined in the file
“native_viewing.ores”, which is located in the directory “Hypercosm
Studio/Includes/Viewing/”.

vector eye = <10 -30 20>;
vector lookat = <0 0 0>;
scalar field_of view = 60;

Figure 11.6: Native Viewing Variables

COPYRIGHT®©2006 132 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

USING 3D COORDINATES

In 3D graphics systems, the locations of objects are defined using 3D coordinates. 3D
coordinates work by specifying a location relative to another point. The point that we
define objects relative to in our 3D world is called the “origin”. The directions that we
use to define coordinates are the X axis, Y axis, and Z axis. If we are located at the origin
looking towards the Y axis, then the X axis can be thought of as extending from left to
right, the Y axis from back to front and the Z axis from down to up.

A NOTE ABOUT UNITS

You might be wondering exactly what size the units are in the 3D coordinate system. If
you move an object one unit away, how far will that be on-screen? If you want to place
an object % of the way across the window, how many units should you move it? This is
frequently a source of confusion or those starting out in 3D graphics. Units in the
Hypercosm word are completely relative. How they appear on screen depends upon
camera placement and perspective. There is no way to distinguish between a scene
depicting a small object viewed from up close and a scene depicting an identical but
larger object viewed from correspondingly far away. You can imagine the standard
unit of length used to be any type of unit you choose — a millimeter, a yard, or a light
year —just so long as you use them consistently.

EXAMPLE: "CHANGING_THE_VIEW.OMAR”

do changing_the_view;

include "system/3d.ores";
include "system/lighting.ores";

picture changing_the_view with
eye =<4 -4 4>;
lookat = <0 0 0>;
field_of view = 60;

block;
default_lights;

end;

Figure 11.7: Changing the View

COPYRIGHT®©2006 133 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

CHANGING SHAPE PARAMETERS

In the previous example, we simply listed the name of a shape inside of the picture. In
most cases, you actually modify how the shape is created by setting parameters when
you create it. You will need to look at the definition of the shape to know if it has any
parameters and what their definitions are before you can try changing them.

EXAMPLE: "SNOW_SCENE.OMAR”

do snow_scene;

include "system/3d.ores";
include "system/lighting.ores";

picture snow_scene with
eye =<2 -6 4>
lookat =<0 0 2>;

sphere with
center =<0 0 1>; color = white;

end;
sphere with

center = <0 0 2.4>; radius = .6; color = white;
end;
sphere with

center =<0 0 3.2>; radius = .4; color = white;
end;

I nose
cone with

endl =<0-.3 3.2>; end2 =<0 -.8 3.2>; radiusl = .1; radius2 = 0; color = orangg;
end;

Il eyes
sphere with

center = <-.2 -.2 3.4>; radius = .1; color = charcoal;
end;
sphere with

center = <.2 -.2 3.4>; radius = .1; color = charcoal;
end;

default_lights;
end; //snow_scene

Figure 11.8: A Simple Graphics Using Shape Parameters for Modeling

COPYRIGHT®©2006 134 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

DEFINING AND USING SHAPES

Although we could technically define our 3D scenes just by declaring a bunch of shapes
inside of a picture, for even moderately complex scenes this would get unwieldy.

HIERARCHICAL MODELING

A better way of organizing 3D scenes is to group objects together into more complex
shapes. This is done in Hypercosm using “shape” methods, which are similar to picture
methods except that they don’t draw their component shapes until the shape is
instantiated in a picture. The process of declaring new shape definitions and then
reusing them later is the basis of “hierarchical modeling”.

wheel axel car

cylinder ‘i\ wheel (left) mesh (body)

wheel (right) ‘i\ axel (front)

cylinder (axel) axel (rear)

Figure 11.9: Principles of Hierarchical Modeling

Il declaration of new shape
Il
shape <shape name>
Il optional shape parameters would go here — declared as in a procedure

is

Il definition of shape in terms of simpler shapes
end;
<shape name>; Il instantiation of new shape

Figure 11.10: How to Declare and then Instantiate a Shape

COPYRIGHT®©2006 135 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE: “SNOWMAN.OMAR”

do snowman_Scene;

include "system/3d.ores";
include "system/lighting.ores";

shape snowman is

sphere with
center =<0 0 1>;
color = white;

end;

sphere with
center = <0 0 2.4>; radius = .6;
color = white;

end;

sphere with
center = <0 0 3.2>; radius = .4;
color = white;

end;

I nose

cone with

endl =<0-.33.2>; end2 =<0 -.8 3.2>; radiusl = .1; radius2 = 0;
color = orange;

end;

Il eyes

sphere with
center = <-.2 -.2 3.4>; radius = .1;
color = charcoal;

end;

sphere with
center =<.2 -.2 3.4>; radius = .1;
color = charcoal;

end;

end; // snowman

picture snowman_scene with
eye =<2 -6 4>;
lookat =<0 0 2>;

snowman;
default_lights;
end; /[snowman_scene

Figure 11.11: Example of Declaration and Instantiation of a Shape

COPYRIGHT®©2006 136 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

ADDING SIMPLE INTERACTIVITY

In the previous examples, we were able to create and view 3D models, but we didn’t
have a way of moving them around and examining them interactively. This is easily
accomplished using a utility animation called “mouse_controlled_shape”. The
definition of the mouse controlled shape and related animations is stored in a file called
“anims.ores” that you’ll need to include if you want to use the mouse_controlled_shape.
The file “anims.ores” is located in the directory “Hypercosm
Studio/Includes/Animation/”. When you use a “mouse_controlled” anim, the lights are
automatically added for you, so you don’t need to specify them.

Anim name: Description:

mouse_controlled_shape Allows shapes to be controlled interactively

mouse_controlled_animated_shape Allows animated shapes to be controlled
interactively

mouse_controlled_actor Allows actor objects to be controlled interactively

mouse_controlled_picture Allows pictures to be controlled interactively

Figure 11.12: Mouse Controlled Anims

EXAMPLE: “INTERACTIVE_SNOWMAN.OMAR”

do interactive_snowman;

include "system/3d.ores";
include "system/anims.ores";
include "snowman.omar";

anim interactive_snowman with
eye =<2 -6 4>;
lookat =<0 0 2>;

mouse_controlled_shape snowman with
auto_camera is on;

end;
end;

Figure 11.13: Using a Mouse Controlled Shape

COPYRIGHT®©2006 137 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 11:
3D MODELING IN OMAR

LESSON OBJECTIVES:

= Understand how to define simple 3D graphics in OMAR

LESSON CONTENTS:

= What is modeling?
= Hypercosm shape primitives
= Hypercosm emulated 3ds Max™ shapes
»= Transformations
0 Relative transformations
0 Absolute transformations
= Colors
= Materials

= Textures

COPYRIGHT®©2006 139 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

WHAT IS MODELING?

Modeling is the process that we use to represent 3D shapes, surfaces, and materials
using computer software. Modeling can be a complex task simply because the real
world is complex and contains so many different types of shapes.

HYPERCOSM SHAPE PRIMITIVES

In Hypercosm as in other graphics systems, every shape that is displayed must be
described in terms of simpler entities that the software already knows how to deal with.
These simple 3D shapes are called “primitives”. The simple 3D shapes that Hypercosm
understands are all declared in the file “native_shapes.ores”, which is located in the
directory “Hypercosm Studio/Includes/Modeling/Shapes/”.

paraboloid hyperboloid1 hyperboloid2

Figure 12.1: Hypercosm “Quadric” Primitives

NOTES: EXAMPLES OF PRIMITIVES

In the Hypercosm “Example Projects/Instructional Examples” directory, there are
sample projects that show how to use each of the Hypercosm primitives.

COPYRIGHT®©2006 140 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

[

points lines volume

Figure 12.2: Hypercosm “Non-Planar” Primitives

VERTENs

triangle parallelogram polygon

Figure 12.3: Hypercosm “Planar” Primitives

COPYRIGHT®©2006 141 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

HYPERCOSM 3DS MAX™ SHAPES

When a 3D file has been translated from another 3D modeling package using
Hypercosm Teleporter, it is converted to script code. To achieve the highest level of
fidelity in the translation process, Hypercosm Teleporter preserves the set of primitives
that are part of the original 3D modeling package. To do this, it creates a new
“emulated” set of primitives using the script code that preserve the properties of the
original 3D modeling package. These emulated primitives are written entirely in the
OMAR script language.

Shapes Used In Scene

Hypercosm
Emulated 3ds Max™
Shapes

Hypercosm Native 3D Shape Primitives

Figure 12.4: Primitives Used In “Teleported” Script Files

N ?
NOTES: MOREF ON 3DS MAX™
PRIMITIVES

To view examples that demonstrate each of the 3ds Max™ primitives translated into
Hypercosm script, open up the sample project contained in “Example
Projects/Instructional Examples/Hypercosm Teleporter/3ds/3ds Shapes”.

You can see the definitions and implementations of Hypercosm’s emulated 3ds Max™
primitives in the “.ORES” files that are contained in the folder “Hypercosm
Studio/Includes/Hypercosm Teleporter/3ds/”.

COPYRIGHT®©2006 142 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

TRANSFORMATIONS

When we create an instance of an object, we often wish it to have a different position or
size than when the object was defined. This is accomplished by what are known as
transformations. Transformations include actions such as moving, rotating, magnifying,
stretching, and skewing.

RELATIVE TRANSFORMATIONS

Relative transformations specify the size or location of an object relative to the way that
it was originally defined in its declaration. These are the most commonly used type of
transformations. For instance, if the object in the declaration is 2 units high, we can make
it 4 units high by magnifying by 2. To explicitly make the object 4 units high regardless
of how it was defined, we would need to use an absolute transformation, which is
covered later. The declarations of the relative transformations are found in the file
“transformations.ores”, which is located in the directory “Hypercosm
Studio/Includes/Modeling/Transformations/”. The more commonly used ones are listed

below:

Relative Transformation Name Example

direct direct from <0 0 1> to axis;
magnify magnify by 5;

move move to <0 0 10>;

orient orient from <0 0 1> to axis;
rotate rotate by 30 around <0 0 1>;
scale scale by 5 along <0 0 1>;

Figure 12.5: Examples of Commonly Used Relative Transformations

APPLYING RELATIVE TRANSFORMATIONS

Relative transformations are applied by placing transformation calls inside of a “with”
block that is part of the shape instance. This is the same block where you would specify
optional parameters if the shape had any.

<shape name> with
<relative transformations>
end;

COPYRIGHT®©2006 143 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

Figure 12.6: How to Apply Relative Transformations

EXAMPLE: “"SNOW_FAMILY. OMAR”

do snow_family_scene;

include "system/3d.ores";
include "system/anims.ores";
include "snowman.omar";

shape snow_family is
/I Dad
snowman with
move to <-.7 0 0>;
end;

/I Mom
snowman with

magnify by .8; move to <.7 0 0>;
end;

Il Kids
snowman with
magnify by .5; move to <-.5 -1 0>;
end;
snowman with
magnify by .5; rotate by 30 around <0 0 1>; move to <.5 -1 0>;
end;
end; //snow_family

anim snow_family_scene is
mouse_controlled_shape snow_family with
auto_camera is on;
end;
end; //snow_family_scene

Figure 12.7: Example of Relative Transformations

ORDER OF TRANSFORMATIONS

Once we define an object, we can create several instances of the object, all with different
locations, orientations, and dimensions. More than one transformation may be applied

COPYRIGHT®©2006 144 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

to a single instance, for instance, it may be rotated, then stretched, then moved. Note
that the order of the transformations is important. An object that has been stretched,
then rotated looks different from an object that has been rotated, then stretched.

ABSOLUTE TRANSFORMATIONS

The main difficulty with the relative transformations is that sometimes we may want to
manipulate an object without having to look at the dimensions that it was defined with.
For example, say that we include a model of a car into our picture and we want to set it
onto a road. If our road is 1 unit wide and we want the car to fit nicely onto the road,
then if we were to use the relative transformations, we would need to examine the
model of the car to see how big it is and then magnify it by the (road width / car width).
If we use the absolute transformations, however, we can just specify to make the car a
certain width no matter how big or small the car was originally defined to be. The
declarations of the absolute transformations are found in the file “abs_trans.ores”, which
is located in the directory “Hypercosm Studio/Includes/Transformations/”. The more
commonly used ones are listed below:

Absolute Transformation Name Example

dimensions dimensions of <10 20 30>;
size size of 10 along z_axis;
[imit limit z_min to O;

Figure 12.8: Examples of Commonly Used Absolute Transformations

APPLYING ABSOLUTE TRANSFORMATIONS

Absolute transformations are specified a little differently than relative transformations.
Since the absolute transformations need to know the dimensions of the object in order to
work, they must take place after the object has been created. The relative
transformations are listed in a block of statements beginning at the keyword “with”
which is executed before the object is actually created by the computer. The absolute
transformations must occur after the object has been built, so they are listed in a later
block of statements beginning with the keywords “return with”.

<shape name> return with
<absolute transformations>
end;

Figure 12.9: How to Apply Absolute Transformations

COPYRIGHT®©2006 145 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE: “"SNOW_FAMILYZ2. OMAR”

do snow_family_scene;

include "system/3d.ores";
include "system/anims.ores";
include "system/abs_trans.ores";
include "snowman.omar";

shape snow_family with
eye =<3-84>;
lookat =<0 0 2>;

/I Dad - 6 feet tall
snowman return with

size of 6 along z_axis; move to <-1 0 0>;
end;

/I Mom - 5 feet tall
snowman return with

size of 5 along z_axis; move to <1 0 0>;
end;

Il Kids — 3 feet tall
snowman return with
size of 3 along z_axis; move to <-.5 -2 0>;
end;
snowman return with
size of 3 along z_axis; rotate by 30 around <0 0 1>; move to <.5 -2 0>;
end;
end; //snow_family

anim snow_family_scene is
mouse_controlled_shape snow_family with
auto_camera is on;
end;
end; /[snow_family_scene

Figure 12.10: Example of Absolute Transformations

COPYRIGHT®©2006 146 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

COLOR

Because of certain characteristics of the human eye, the perception of almost all
imaginable colors can be created by mixing red, green, and blue in different proportions.
While computer monitors may appear to display a full spectrum of colors, they actually
use only three: red, green, and blue.

REPRESENTING COLORS

In the Hypercosm system, all colors are specified using red-green-blue (RGB) values,
which indicate exact amounts of red, green, and blue to mix in ranges from 0 to 1.

ASSIGNING COLORS TO SHAPES

To assign a color to a shape, you must set the global color variable, “color”, when you
create an instance of that shape. The global color variable is declared in the file
“native_rendering.ores”, which is located in the directory “Hypercosm
Studio/Includes/Rendering/”. This variable is of the type, “color”. The color type
works the same way as the vector type because colors, like vectors, are specified by three
scalar numbers.

color type color;

Figure 12.11: The Global Color Variable

sphere with
color =<1 0 0>; Il sets the colortored (R=1, G=0, B =0)
end;

Figure 12.12: Assigning a Color to a Shape

HIERARCHY OF COLORS

The system for assigning colors to shapes works in a hierarchical manner. When you
assign a color to an instance of a shape, that color only applies to the “unpainted” parts
of the shape that haven’t already had a color assigned. For parts of the shape that have
already been assigned a color, the previously assigned color takes precedence. The color
that gets assigned to a primitive is the color that is closest to the shape in the modeling
hierarchy.

COPYRIGHT®©2006 147 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

PREDEFINED COLORS

For your convenience, Hypercosm provides a number of predefined colors so you can
refer to colors by name instead of by RGB values. The following chart shows the names
of available colors and the RGB values that each color represents. These colors are
defined in the file “common_colors.ores”, which is located in the directory “Hypercosm
Studio/Includes/Drawing/Colors/”.

Name RGB Value
black 000
white 111
grey 555
red 100
green 010
blue 001
cyan 011
magenta 101
yellow 110
orange 150
brown 35.20
gold 9.8.3
maize 8.70
brick 5.150
rust 731
charcoal 2.2.2
raspberry 105
pink 1.6.7
flesh 9.76
beige 1.9.85
lime_green 5.80
olive 450
evergreen 0.4.25
teal 0.75 .6
aqua 0.75.75
turquoise 0.7.9
sky_blue 6.751
azure 35.3.75
lavender 8.6.9
purple 6.15.75
violet 50.9
eggplant 30.2

Figure 12.13: Predefined Colors (from “common_colors.ores)

COPYRIGHT®©2006 148 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

COLOR MODULATION FUNCTIONS

In addition to the predefined colors, for convenience Hypercosm provides two utility
functions, “light” and “dark” to make colors lighter or darker by mixing them with
white or black.

color type question light
color type color;
end;

color type question dark
color type color;
end;

Figure 12.14: Color Modulation Functions

color = light yellow;
color = dark green;
color = light light yellow;
color = dark dark green;

Figure 12.15: Use of Color Modulation Functions

DEFAULT COLORS

If you don’t assign any colors to your objects, you may be surprised to find that they still
are displayed in various colors. This is because each primitive shape has a default color
assigned to it. If you don’t assign a shape any colors at all, then each primitive will take
on the default color associated with that primitive. The default shape colors are listed in
the file “native_shape_colors.ores”, which is located in the directory “Hypercosm
Studio/Includes/Modeling/Shapes/”.

COPYRIGHT®©2006 149 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE: ?DFFAULT _COLORS.OMAR”

do example;

include "system/3d.ores";
include "system/lighting.ores";

shape snowman is
sphere with
center =<0 0 1>;

end;
sphere with
center = <0 0 2.4>; radius = .6;
end;
sphere with
center =<0 0 3.2>; radius = .4;
end;
I nose
cone with
endl =<0-.33.2> end2=<0-.8 3.2>;
radius1 = .1; radius2 = 0;
end;
Il eyes
sphere with
center = <-.2 -.2 3.4>; radius = .1;
end;
sphere with
center =<.2 -.2 3.4>; radius = .1;
end;

end; // snowman

picture example with
eye =<3-84>;
lookat = <0 0 2>;

snowman;
default_lights;
end; /[example

Figure 12.16: Example of Default Colors

COPYRIGHT®©2006 150 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE:

do example;

include "system/3d.ores";
include "system/lighting.ores";

shape snowman is

end;

“COLORED _SNOWMAN.OMAR”

color = white;
sphere with
center =<0 0 1>;
end;
sphere with
center = <0 0 2.4>; radius = .6;
end;
sphere with
center = <0 0 3.2>; radius = .4;
end;
/I nose
cone with
endl =<0-.3 3.2>; end2 =<0 -.8 3.2>; radiusl = .1; radius2 = 0;
color = orange;
end;
Il eyes
sphere with
center = <-.2 -.2 3.4>; radius = .1;
color = charcoal;
end;
sphere with
center =<.2 -.2 3.4>; radius = .1;
color = charcoal;
end;
/I snowman

picture example with

end;

eye =<3-8 4>;
lookat = <0 0 2>;

snowman;
default_lights;
Il example

Figure 12.17: Example of Application of Colors

COPYRIGHT®©2006 151

HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE: “RANDOM_COLORS.ORES”

do example;

include "system/3d.ores";
include "system/lighting.ores";
include "system/random.ores";

shape snowman
is
sphere with
center =<0 0 1>;
color = vrandom from black to white

end;
sphere with
center = <0 0 2.4>; radius = .6;
color = vrandom from black to white;
end;
sphere with
center = <0 0 3.2>; radius = .4;
color = vrandom from black to white;
end;
I nose
cone with
endl =<0-.3 3.2>; end2 =<0 -.8 3.2>; radiusl = .1; radius2 = 0;
color = vrandom from black to white;
end;
Il eyes
sphere with
center = <-.2 -.2 3.4>; radius = .1;
color = vrandom from black to white;
end;
sphere with
center =<.2 -.2 3.4>; radius = .1;
color = vrandom from black to white;
end;

end; // snowman

picture example with

eye =<3 -8 4>; lookat = <0 0 2>;
is

snowman; default_lights;
end; /[example

Figure 12.18: Example of the Use of Random Colors

COPYRIGHT®©2006 152 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

MATERIALS

How color varies across a surface in response to light depends upon a variety of factors
other than color. To control the appearance of objects in a more precise matter, we use
materials. Materials allow you to more closely approximate the appearance of objects in
the real world. Materials are defined in the file “native_materials.ores”, which is located
in the directory “Hypercosm Studio/Includes/Rendering/Materials/”;

ASSIGNING MATERIALS TO SHAPES

To assign a material to a shape, you must set the global material variable, “material”,
when you create an instance of that shape. The global material variable is declared in
the file “native_rendering.ores”, which is located in the directory “Hypercosm
Studio/Includes/Rendering/”. This variable is of the type, “material”. The material
type defines a number of attributes that define particular aspects of the material that
contribute to the material’s apparent color.

material type material;
Figure 12.19: The Global Material Variable

sphere with
material is wood; I sets the material of the sphere
end;

Figure 12.20: Assigning a Material to a Shape

COMMON MATERIALS

For convenience, a set of common materials is predefined for you in the file
“common_materials.ores” which is located in the directory “Hypercosm
Studio/Includes/Rendering/Materials/”. This set of materials includes a variety of metals
as well as materials like wood, rubber, or stone.

COPYRIGHT®©2006 153 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

PREDEFINED MATERIAL FUNCTIONS

For convenience, a small set of material generation functions is included in order to
make it easier to create and assign materials. The three main predefined materials are:
chalk, plastic, and metal.

CHALK

A chalk material is a material that has no highlights and reflects light in a diffuse way.
The main parameter to the “chalk” function is a color, which becomes the main “diffuse”
color of the material.

sphere with
material is chalk colored red; I sets the material of the sphere
end;

Figure 12.21: Assigning a Chalk Material to a Shape

PLASTIC

A plastic material is distinguished by having a white shiny highlight. Plastic materials
take a color as a parameter that becomes the main “diffuse” color to which the white
highlight is added.

sphere with
material is plastic colored red; Il sets the material of the sphere
end;

Figure 12.22: Assigning a Plastic Material to a Shape

METAL

A metal material is distinguished by a colored, semi shiny highlight. For example, a
copper sphere will have an orange colored highlight whereas a gold sphere will have a
yellowish highlight.

sphere with
material is metal colored red:; I sets the material of the sphere
end;

Figure 12.23: Assigning a Metal Material to a Shape

COPYRIGHT®©2006 154 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

CONSTANT COLOR

A constant_color material is distinguished by a lack of shading. The entire surface of an
object with a constant color material will appear the exact same color regardless of the
direction of the light or other lighting conditions.

sphere with
material is constant_color red; I sets the material of the sphere
end;

Figure 12.24: Assigning a Constant Color Material to a Shape

THE MATERIAL HIERARCHY

Materials are applied in a hierarchy in a similar way to colors. One difference is that
materials always override colors. If you have a model that has colors assigned to
various parts and you apply a material to it, the material will cover all of the colors.

“"OVERRIDE” MATERIALS

The other difference is that you can override the hierarchical way that materials are
applied. Each material has a parameter called “override”. If you set the override
parameter to true, then that material will cover all other materials in the model
hierarchy that don’t have the “override” set. This is particularly useful when you have a
model that has had a series of materials assigned and you want to paint over the entire
model with a single material. For example, this feature is particularly useful when
you’d like to “highlight” a model or assembly.

assembly with
material is (chalk colored red with override is true); // sets the material of the assembly
end;

Figure 12.25: Assigning an Override Material to a Shape

TEXTURES

The easiest way to add interesting, complex features to the surfaces of your shapes is to
use textures. When a shape is textured, an image from an image file is mapped onto the

COPYRIGHT®©2006 155 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

surface of the 3D object. Using textures, you can map an image of the earth onto a
sphere, or create realistic materials such as wood, brushed metal or stone. You can even
“fake” a large amount of geometry when the user won't be close enough to see the
difference between the texture and the actual geometry. For example, you could map an
image of a crowd across the seats of a stadium or map an image of bumps or ridges onto
a knob or dial.

ASSIGNING TEXTURED MATERIALS TO SHAPES

The easiest way to assign a texture is to create a material type that incorporates an image
file as a texture. Each of the predefined material generation functions (chalk, plastic,
metal, constant_color) have a keyword parameter that lets to easily add a texture. The
easiest way to do this is with the “poster” keyword parameter. When you create a
material using this keyword, you must provide a string parameter for the name of the
image file to use. The material will do the rest.

sphere with
material is plastic poster "earth.jpg"; Il set the shape’s material and the material’s texture
end;

Figure 12.26: Assigning a Textured Material to a Shape

TEXTURE IMAGE FILE TYPES

The Hypercosm system can create textures from GIF, JPEG, or PNG files. The
appropriate file format to use depends upon the type of image that you want to use.
JPEG files are best suited for continuous tone images such as digital photographs. GIF
tiles are best for images with just a few colors such as decals or diagrams. PNG files
have the benefit that they can have a transparency channel that allows varying degrees
of transparency.

COPYRIGHT®©2006 156 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE: “TEXTURED_ _SNOWMAN.OMAR”

do textured_scene;

include "system/3d.ores";

include "system/lighting.ores";

include "system/common_materials.ores";
include "system/anims.ores";

shape textured_snowman is
sphere with
center=<00 1>;
material is golden;

end;
sphere with
center = <0 0 2.4>; radius = .6;
material is wood:;
end;
sphere with
center = <0 0 3.2>; radius = .4;
material is plastic poster "flag.gif";
end;
I nose
Ik
cone with
endl =<0 -.33.2>; end2 = <0 -.8 3.2>; radius1 = .1; radius2 = 0;
material is plastic colored orange;
end;
Il eyes
Il
sphere with
center = <-.2 -.2 3.4>; radius = .1; material is metal;
end;
sphere with
center = <.2 -.2 3.4>; radius = .1; material is metal;
end;

end; //textured_snowman

anim textured_scene with

eye =<2 -6 4>; lookat = <0 0 2>;
iS

mouse_controlled_shape textured_snowman;
end; //textured_scene

Figure 12.27: Assigning a Textured Materials to Shapes

COPYRIGHT®©2006 157 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON OBJECTIVES:

= Understand the principles of animation

= Be able to create simple animations in OMAR

LESSON 12:

SIMPLE ANIMATION

LESSON CONTENTS:

The principle of animation
Acceptable frame rates
Anims

Controlling animation speed

Animated shapes

COPYRIGHT®©2006 159

HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

THE PRINCIPLE OF ANIMATION

Animation is, literally, the process of bringing something to life. To bring imagery to
life, you must make it dynamic, that is, to give it the characteristic property of life, the
ability to change over time. You can create the illusion of an animated image by
presenting a sequence of images in quick succession. If each image is only slightly
different from the previous one and the time between each image is short, then the brain
fills in the gaps between the images and we perceive a continuous, fluid animation. This
is the underlying principle of all forms of animation, including motion pictures,
television, video, and Saturday morning cartoons. It is also how Hypercosm animation
works.

ACCEPTABLE FRAME RATE

Fluid animation requires a frame rate of around 30 frames per second. Video and
television are shown at 30 frames per second. Film projectors traditionally present a
slightly lower frame rate of 24 frames per second. Some special projector systems, such
as IMAX, present 60 frames per second. For many applications, a much lower frame
rate is acceptable, however below about 10 frames per second, the eye can detect the
changes between frames and the resulting animation may appear jerky instead of fluid
and smooth.

Animation Type Frame Rate (frames per second)
Video / Television 30

Film 24

Interactive Computer Animation 10-30

Figure 13.1: Frame Rates of Different Forms of Animation

ANIMATION IN HYPERCOSM

Hypercosm animations make use of a special type of OMAR procedure known as an
anim. Inside an anim is a looping statement that tells the computer to create pictures
repeatedly. Each picture differs slightly from the one before it. An anim is just like a
verb or procedure except that it is allowed to call pictures. The graphical procedures
(anims, pictures, and shapes) may call the non graphical procedures (verbs and
questions) but not vice versa. Note that an anim cannot directly call a shape. In order
to use a shape, an anim must call a picture that calls a shape.

COPYRIGHT®©2006 160 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

Subprogram Type Types of Subprograms that May be
Called

verb, question verb, question

shape shape, verb, queustion

picture shape, verb, question

anim picture, verb, question

Figure 13.2: Subprogram Types

EXAMPLE: "ROTATING_SNOWMAN.ORES”

do rotating_snowman;

include "system/3d.ores";
include "snowman.omar";

picture scene with
scalar rotation = 0;
is
snowman with
rotate by rotation around <0 0 1>;
end;
distant_light;
end; //scene

anim rotating_snowman with
eye =<3 -8 4>
lookat = <0 0 2>;

scalar angle = 0;

while true do
scene with
rotation = angle;
end;

angle = itself + 1;
end;
end; //rotating_snowman

Figure 13.3: A Simple Animation

COPYRIGHT®©2006 161 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

CONTROLLING ANIMATION SPEED

In the previous example, there is a problem with the way that the animation has been
specified. Note that each time a picture is drawn, the rotation increases by 1 degree.
This means that the speed of the animation is dependent upon the speed of your
computer. Normally, we’d like the animations that we create to be able to run on a
range of different types of computers. Also, computers tend to get a little bit faster every
year and so animations that are coded in this way will speed up as the computers that
they run on get faster. A better way is clearly needed. The answer is to control the
animation speed using the system’s clock.

THE TIME FUNCTIONS

Hypercosm provides a set of time functions in order to make it easy to get the current
time or the elapsed time from the previous frame. We use these functions to control
animation speed. These functions are declared in the file “native_time.ores”, which is
located in the directory “Hypercosm Studio/Includes/Time/”.

Function Description

scalar question get_seconds; This method returns the number of
seconds since the applet was started.

time type question get_time; This function returns the number of hours,
minutes, and seconds since midnight.

scalar question get_frame_duration; This function returns the amount of time
that has elapsed since the last picture was
drawn.

Figure 13.4: The Time Functions

COPYRIGHT®©2006 162 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE: "CONSTANT_ROTATION.OMAR”

do constant_rotation;

include "system/3d.ores";
include "rotating_snowman.omar";

anim constant_rotation with
eye =<3 -8 4>
lookat =<0 0 2>;

scalar rpm = 10, angle = 0;

while true do
scene with
rotation = angle;
end;

Il use get_frame_duration to control the advancing of the rotation angle
i
angle = itself + rpm / 60 * get_frame_duration * 360;
end;
end; //constant_rotation

Figure 13.5: A Time Controlled Animation

ANIMATED SHAPES

Animation is such a commonly performed function that it helps to have a standardized
way of doing it. In the previous example, the code for computing the rotation is
separate from the place where the rotation is applied. A better approach might be to
have all of the rotation code inside of the shape and then the only thing the shape needs
to “know” about is the passing of time. To do this, we create an “animated shape”. An
animated shape is simply a shape with a scalar time parameter. The time parameter is
what allows the system to know when the shape is changing and when the drawing
needs to be updated.

COPYRIGHT®©2006 163 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE: "ANIMATED_SNOWMAN.OMAR”

do animated_snowman;

include "system/3d.ores";
include "snowman.omar";

shape rotating_snowman with
scalar time = 0;
is
scalar rpm = 10;
scalar angle = rpm / 60 * time * 360;

snowman with
rotate by angle around <0 0 1>;
end;
end; /[rotating_snowman

picture scene is
rotating_snowman with
time = get_seconds;
end;
distant_light;
end; //scene

anim animated_snowman with
eye =<3 -8 4>
lookat = <0 0 2>;

while true do
scene;
end;
end; //animated_snowman

Figure 13.6: An Animated Shape

MOUSE CONTROLLED ANIMATED SHAPES

One other convenient aspect of using animated shapes is the ability to use them with the
“mouse_controlled_animated_shape” anim. This is a handy animation utility that
makes it easy to view and interact with animated shapes. All you need to do is to give
your shape a time parameter and then pass it to this anim. The animation, user
interaction, and lighting will all be taken care of for you.

COPYRIGHT®©2006 164 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE:
Y“INTERACTIVE_ANIMATED _SNOWMAN.OMAR

V4

do interactive_animated_snowman;

include "system/anims.ores";
include "system/3d.ores";
include "snowman.omar";

shape rotating_snowman with
scalar time = 0;
is
scalar rpm = 10;
scalar angle = rpm / 60 * time * 360;

snowman with
rotate by angle around <0 0 1>;
end;
end; /[rotating_snowman

anim interactive_animated_snowman with

eye =<3-8 4>;

lookat = <0 0 2>;
iS

mouse_controlled_animated_shape rotating_snowman;
end; //interactive_animated_snowman

Figure 13.7: A Mouse Controlled Animated Shape

COPYRIGHT®©2006 165 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 13
INPUT — THE KEYBOARD AND

MOUSE

LESSON OBJECTIVES:

= Understand how to use the keyboard input

= Understand how to use the mouse input

LESSON CONTENTS:

= Keyboard functions

= Keyboard click functions

= Keycodes and characters

= Mouse location and button functions

= Mouse click functions

COPYRIGHT®©2006 167 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

THE KEYBOARD

The keyboard is often a useful way to control animations and simulations. For this
purpose, Hypercosm provides a set of keyboard functions that allow you to determine
the state of any key on the keyboard or to report key press events.

KEYBOARD QUERYING

The first function, “key_down” is used to query the current status of the keyboard. The
“key_down” function is located in the file “native_keyboard.ores”, which is located in
the directory “Hypercosm Studio/Includes/Devices/Keyboard/”. This function takes a
keycode as a parameter and then checks whether the corresponding key is pressed. If
that key is pressed, “key_down” answers true, otherwise it answers false.

boolean question key_down
integer key;
end;

Figure 14.1: The Keyboard Querying Function

KEYCODES

Keycodes are a way of identifying each key on the keyboard. Since all computers have
different keyboards, a certain key may have different keycodes on different computers,
or may not even exist on certain computers. On a Macintosh, for example, the keycode
for the “A” key is 0, whereas on a UNIX machine, it is 97. If you were to use only your
operating system’s keycodes to refer to keys, then your programs would not be portable
between different makes of computers. As a way around this problem, Hypercosm
provides its own keycodes to attempt to make programs more portable. The
Hypercosm system handles the conversion between the Hypercosm keycode and the
system-dependent keycode internally. The Hypercosm keycodes are all defined in the
tile “keycode.ores”, which is locataed in the directory “Hypercosm
Studio/Includes/Devices/Keyboard/”.

COPYRIGHT®©2006 168 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

CONVERTING BETWEEN KEYCODES
AND CHARACTERS

For the common letter and symbol keys on the keyboard, it’s easiest to refer to the keys
by character instead of by keycode. You can use the functions “key_to_char” and
“char_to_key” to convert between characters and the Hypercosm keycodes. These
functions are located in the file “keycode.ores”, which is located in the directory
“Hypercosm Studio/Includes/Devices/Keyboard/”.

char question key_to_char
integer key;
with
boolean shift is false;
end;

integer question char_to_key
char c;
end;

Figure 14.2: Keycode to Character Conversion Functions

Note that there are many special keys on a keyboard, such as F1 or Page Up, that do not
correspond to any printable character and cannot therefore be converted to chars. For
this reason, the conversion functions only work for the letter, number, and symbol keys,
and for certain special keys such as the Space, Tab, and Enter keys. If you need to know
the keycode of a special key such as F1, then you can look in the resource file,
“keycode.ores”, where you can find the conversion function definitions together with
documented conversion tables.

COPYRIGHT®©2006 169 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE: “"KEY_CONTROL_ROBOT.OMAR”

do key_controlled_robot;

include "system/3d.ores";
include "system/anims.ores";
include "system/shapes.ores";

shape robot with
scalar base_rotation = 0;
scalar arm1_angle = 0, arm2_angle = 0;

shape base is
cylinder with
endl =<000>; end2 =<0 0 .1>; radius = 1;

end;
cone with
endl =<0 0 .1>; radiusl = 1; end2 = <0 0 .5>; radius2 = .4;
end;
sphere with
center = <0 0 .5>; radius = .4; material is plastic colored white;
end;
end; //base

shape arm with
scalar angle = 0;

is
cylinder with
endl =<0 0 0>; end2 = <0 0 1>; radius = .1;
end;
rod with
endl =<-.2 0 1>; end2 = <.2 0 1>; radius = .2;
end;
cylinder with
endl =<000>; end2 =<0 0 1>; radius = .1;
rotate by angle around <1 0 0>; move to <0 0 1>;
end;
end; //arm
base with
material is plastic colored red;
end;
arm with
angle = arm2_angle; move to <0 0 .4>;
rotate by arm1_angle around <1 0 0>;rotate by base_rotation around <0 0 1>;
move to <0 0 .5>; material is plastic colored blue;
end;

end; // robot

COPYRIGHT®©2006 170 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

anim key_controlled_robot with
eye =<2-6 4>
lookat = <0 0 1>;

scalar anglel = 60, angle2 = 10, angle3 = 30;

verb check_keys is
const integer anglel_key = char_to_key of "j";
const integer reverse_anglel key = char_to_key of "u";
const integer angle2_key = char_to_key of "k";
const integer reverse_angle2_key = char_to_key of "i";
const integer angle3_key = char_to_key of "I";
const integer reverse_angle3_key = char_to_key of "0";

if key_down anglel_key then
anglel = itself + 5;

elseif key_down reverse_anglel key then
anglel = itself - 5;

elseif key_down angle2_key then
angle2 = itself + 5;

elseif key_down reverse_angle2_key then
angle2 = itself - 5;

elseif key_down angle3_key then
angle3 = itself + 5;

elseif key_down reverse_angle3_key then
angle3 = itself - 5;

end;

end; // check keys

shape scene with
scalar time = 0;
is
robot with
base_rotation = anglel; arm1_angle = angle2; arm2_angle = angle3;
end;
end; //scene

mouse_controlled_animated_shape scene doing check_keys;
end; //key_controlled robot

Figure 14.3: A Keyboard Controlled Robot

COPYRIGHT®©2006 171 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

KEYBOARD EVENTS

One potential problem with using the keyboard query function is that it looks at the
instantaneous state of the keyboard. If you press the key fast enough, it’s possible that
the applet may miss the key press, especially if the frame rate is not very high. A better
way to handle this type of situation is to keep a queue of key press events. Each time
you strike a key on your keyboard, your computer takes note by entering an event in the
keyboard event queue. Hypercosm provides a means of checking this event queue for
keyboard events by calling the function “get_key”. This function is located in the file
“native_keyboard.ores”, which is located in the directory “Hypercosm
Studio/Includes/Devices/Keyboard/”. When “get_key” is called, it removes the oldest
event remaining in the queue and returns information about it. The integer that get_key
returns is the keycode of the key that was struck.

integer question get_key
return with
boolean shift;
boolean alt;
boolean control;
end;

Figure 14.4: The Keyboard Event Querying Function

In addition to returning a keycode, get_key also has optional return parameters to
indicate whether a modifier key — Shift, Alt/Option, Control, or Caps Lock — was pressed
down when the key was struck. There is no caps-lock parameter. Instead, the shift
parameter is adjusted accordingly. If Caps Lock is down and a letter key is struck, then
shift will be true; otherwise, the Caps Lock key has no effect.

The program shown in Figure 14.5 listens for key events, and writes out the keycode of

the last key event encountered. This little program can be used as a handy utility to
figure out what the keycodes are for various keys on the computer keyboard.

COPYRIGHT®©2006 172 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE: "SHOW_KEYCODES.OMAR”

do show_keycodes;

include "system/3d.ores";
include "system/string_conversions.ores";
include "system/native_overlay_text.ores";

last key = 37

integer keycode = 0;

picture show_keycode is
string type message;

message is "last key = ";
message add integer_to_string of keycode;
overlay_text message;

end; // show_keycode

verb update_keycode is
integer new_keycode = get_key; Il get the most recent key event from the queue

if new_keycode <> 0 then
keycode = new_keycode;
end;
end; //update_keycode

anim show_keycodes is
while true do
show_keycode;
update_keycode;
end;
end; // show_keycodes

Figure 14.5: Keycode Display

COPYRIGHT®©2006 173 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

THE MOUSE

The most common means for interacting with 3D models and simulations is by using the
mouse. For this purpose, Hypercosm provides a set of mouse functions that allow you
to determine the state of the mouse or to report mouse events.

THE MOUSE LOCATION

For querying the current location of the mouse, Hypercosm provides the function
“mouse_down”, in the file “native_mouse.ores”, which is located in the directory
“Hypercosm Studio/Includes/Devices/Mouse/”. The function “get_mouse” returns a
vector that contains the location of the mouse cursor. The x component of the vector
indicates the horizontal position of the cursor and the y component indicates the vertical
position. The z component is not used. The components of the vector may be extracted
by using the dot operator.

vector question get_mouse
enum coords is raster, screen;
in coords type coords is screen;
end; //get_mouse

Figure 14.6: The Mouse Location Querying Function

SCREEN COORDINATES

The default coordinate system that is used to record the mouse cursor location is known
as “screen coordinates”. In screen coordinates, the center of the window is at <0 0 0>.
The upper left corner of the viewing window is at <-1 1 0>, the upper right corner is at <1
1 0>, the lower right corner is at <1 -1 0> and the lower left corner is at <-1 -1 0>.

COPYRIGHT®©2006 174 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

('1r 1) A (11 1)

(0,0)

A
A 4

(-1,-1) (1, -1)

A 4

Figure 14.6: Screen Coordinates

RASTER COORDINATES

The other option for mouse coordinate systems is raster coordinates. This coordinate
system returns coordinates in “pixels” with the origin at the upper left corner of the
window. This coordinate system is not usually used because we usually don’t want
appets to behave in a way that is dependent upon applet size.

0.0) (width,)

0, height) (width, height)

\

Figure 14.7: Raster Coordinates

COPYRIGHT®©2006 175 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE:
“SHOW_MOUSF_COORDS.OMAR”

do show_mouse_coords;

include "system/3d.ores";
include "system/native_overlay_text.ores";
include "system/string_conversions.ores"; mouse in screen coordinates = <0 295833 1.026667 0,000000>

mouse in raster coordinates = <622.000000 -8.000000 0.000000>

picture scene is
vector screen_coords, raster_coords;
string type message;

Il query mouse location

i

screen_coords = get_mouse in screen;
raster_coords = get_mouse in raster;

Il write mouse location in screen coords

Ik

message is "mouse in screen coordinates = ";
message add vector_to_string of screen_coords;
overlay_text message at <0.1 0>;

Il write mouse location in raster coords
I
message is "mouse in raster coordinates = ";
message add vector_to_string of raster_coords;
overlay_text message at <0 -.1 0>;

end; //scene

anim show_mouse_coords is
while true do
scene;
end;
end; // show_mouse_coords

Figure 148: Querying the Mouse Location

COPYRIGHT®©2006 176 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE: "MOUSE_ROTATION.OMAR

do mouse_rotation;

include "system/3d.ores";
include "system/mouse.ores";

picture scene with
eye =<0-8 0>;
is
Il query the mouse location
I
vector mouse = get_mouse;

distant_light from <1 -3 2>;
block with
rotate by mouse.y * -180 around <1 0 0>; // rotate by mouse’s y coordinate
rotate by mouse.x * 180 around <0 0 1>; // rotate by mouse’s x coordinate
end;
end; //scene

anim mouse_rotation is
while true do scene; end;
end; // mouse_rotation

Figure 14.7: Example of Mouse Location Querying

THE MOUSE BUTTON

Another useful function is the “mouse_down” function. The “mouse_down” function is
defined in the file “native_mouse.ores”, which is located in the directory “Hypercosm
Studio/Includes/Devices/Mouse/”. This function takes a mouse button number as a
parameter and then checks whether the corresponding mouse button is pressed. If the
button is pressed, the function answers true, otherwise it answers false.

boolean guestion mouse_down
button integer number = 1;
end; /[mouse_down

Figure 14.8: The Mouse Button Querying Function

COPYRIGHT®©2006 177 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

On a two or three button mouse, the left button is button 1 and the right button is button
3. On a three button mouse, the middle button is button 2. On a one button mouse, the
only mouse button is number 1.

EXAMPLE:
“SIMPLE_MOUSE_CONTROL.OMAR”

do example;

include "system/3d.ores";

vector location = <0 0 0>, orientation = <0 0 0>; ‘

picture scene with
eye =<0-8 0>;
is
distant_light from <1 -3 2>;
block with
rotation of orientation;
move to location;

end;
end; //scene

anim example is
vector old_mouse =<0 0 0>;

while true do
vector new_mouse = get_mouse; Il query mouse location
vector delta = new_mouse - old_mouse;

scene;

if mouse_down of left then Il query mouse button status
location = itself + <delta.x 0 delta.y> * 4;

else
orientation = itself + <delta.y 0 delta.x> * 360;

end;

old_mouse = new_mouse;
end;
end; // example

Figure 14.9: Using the Mouse Location and Button Querying Functions

COPYRIGHT®©2006 178 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

MoOUSE CLICKS

The mouse_down function is useful for interactions that require the user to press and
hold down a mouse button as in the example shown above. However, mouse_down is
not very useful for interactions that require the user to click or double_click a
mouse_button. This is because mouse_down ony checks the current state of the mouse.
If the animation frame rate is slow, then mouse_down can easily miss a mouse click.
Instead of using mouse_down to detect mouse clicks, Hypercosm provides the function
“get_click”. This function is defined in the file “native_mouse”, which is located in the
directory “Hypercosm Studio/Includes/Devices/Mouse”. When using this function,
mouse clicks are all captured and stored on a queue inside the Hypercosm Player.
When get_click is called, a mouse event is removed from the queue and the information
about the precise location and conditions of this mouse click is returned.

enum click is down, double_click, up;

click type guestion get_click
enum coords is raster, screen;
in coords type coords is screen;
of button integer requested_button = 0;
return with
integer button;
vector location;
boolean shift;
boolean alt;
boolean control;
boolean caps_lock;
end; // get_click

Figure 14.10: The Mouse Click Querying Function

The get_click function has a number of useful optional return parameters. The button
parameter indicates which mouse button was clicked. The location parameter indicates
where the cursor was when the click occurred. The boolean parameters - shift, alt,
control, and caps_lock — indicate which of the corresponding modifier keys were
pressed when the click occurred.

COPYRIGHT®©2006 179 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 14:

PICKING

LESSON OBJECTIVES:

= Understand the picking process
= Know how to tag objects for selection

= Know how to test for object touching

LESSON CONTENTS:

= What is picking?
= The picking process
= Tagging shapes using selecton sets

= Testing for mouse touching

COPYRIGHT®©2006 181 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

WHAT IS PICKING?

Picking is the process of determining what objects in a 3D scene appear to have been
touched by the mouse cursor on the screen. This process is somewhat more complicated
than it would be for a 2D graphics application because the mouse cursor is located in the
2D coordinate system of the screen and the scene is in a 3D space. To do picking, we
need to test objects that lie along a ray that is projected from the eye, through this point
on the screen and into the 3D scene. Although this process is non-trivial, luckily the
difficult part is taken care of for you by the Hypercosm system and the 3D graphics
hardware on your computer system.

THE PICKING PROCESS

To do picking, you must first include the file “native_picking.ores” in your OMAR file.
This file is located in the directory “Hypercosm Studio/Includes/Sensing/” and contains
the utilities described in the next few sections. Once you’ve done this, the picking
process occurs in two parts:

1. Tagging shapes in the scene with picking identifiers
2. Testing to see if a particular picking identifier has been touched by the mouse
cursor

TAGGING SHAPES USING SELECTION SETS

The first tagging part of the process is performed by setting a global variable called
“selection_set”.

native integer selection_set;

Figure 15.1: The Selection Set Variable

To tag a particular shape, set this variable inside the “with” block when you instantiate
the shape. The “selection set” is an integer identifier that identifies that shape as being
selectable. Note that you can have multiple objects that are disconnected share the same
selection set and then from a selection point of view, they will behave like they are part
of the same objects.

COPYRIGHT®©2006 182 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

<shape name> with

move to <0 0 1>; I transformation
material is plastic colored red; I/ setting material attributes
selection_set = 1; Il setting selection attributes

end;

Figure 15.2: Tagging a Shape

TESTING FOR MOUSE TOUCHING

Once you have tagged your shapes in the scene with selection set identifiers, you can
then test the mouse cursor location to see if any of these objects are being touched. This
is done by using the function “is_shape_touched”.

native boolean question is_shape_touched
using integer selection_set;

return
at scalar depth;

end; //is_shape_touched

Figure 15.3: The Mouse Touching Function

Note that “is_shape_touched” also has an optional parameter for returning the depth or
distance to the point where the touching has occurred. This can be used to find out the
location of the actual touch point in the 3D scene by projecting a ray this distance from
the eye in the direction projected by the cursor.

COPYRIGHT®©2006 183 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE: “SIMPLE_PICKING.OMAR”

do example;

include "system/3d.ores";

include "system/anims.ores";
include "system/native_picking.ores";

shape scene is

block with

move to <1 0 0>;

selection_set = 1; Il set selection set of block
end;
cone with

move to <-1 0 0>;

selection_set = 2; I set selection set of cone
end;

end;

verb picking is
if is_shape_touched using 1 then Il test selection set of block
overlay_text "Block is touched!";
write "block touched", ;
elseif is_shape_touched using 2 then Il test selection set of cone
overlay_text "Cone is touched!";
write "cone touched!", ;
end;
end; // picking

anim example with

eye =<2 -8 4>;
is

mouse_controlled_shape scene doing picking;
end; // example

Figure 15.4: An Example of Picking

COPYRIGHT®©2006 184 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 15:

SOUND

LESSON OBJECTIVES:

= Know how to create sounds and play sounds

= Know how to include sounds in your projects

LESSON CONTENTS:

= Why Use Sound?
= Creating new sounds

= Playing sounds

COPYRIGHT®©2006 185 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

WHY USE SOUND?

One of the most compelling reasons to use interactive 3D graphics is the fact thatitis a
very compelling and engaging medium. One reason that interactive 3D is so engaging is
because it engages both our eyes and our hands at the same time. Interactive 3D is
inherently a multisensory experience. The more sensory channels that we can
simultaneously engage, the more compelling the experience will be. A relatively easy
way to make 3D applications even more compelling is to use sound to engage our sense
of hearing. There is a reason that sound has been an integral component of video game
design since its inception. For training applications, one of the most compelling ways to
engage the user is to (1) provide a set of instructions to read while we (2) show
instructions graphically animated while we (3) allow the user to manipulate the scene
with his or her hands while at the same time we (3) play audio instructions for the user
to hear.

CREATING SOUNDS

Sounds are stored in external files. Sound file format that can be used are WAV files
and .MP3 files. To use a sound in Hypercosm, you must first create a sound object that
references an external sound file. The definition of the sound objects is stored in the file
“native_sounds.ores”, which is located in the directory “Hypercosm
Studio/Includes/Sounds/”.

sound type <sound name> named string type name;

Figure 16.1: Creating a new sound

PLAYING SOUNDS

Once you have created a sound, you can call “methods” of that sound object in order to
use it. Methods are just like procedures or “verbs” that you've previously encountered
except that they are preceded by the name of the sound object that you want to perform
the method.

<sound name> play;

Figure 16.2: Playing a sound

COPYRIGHT®©2006 186 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE: “"SONIC_SHAPES.OMAR”

do example;

include "system/3d.ores";

include "system/anims.ores";

include "system/native_picking.ores";
include "system/native_overlay_text.ores";

Il create new sounds

i

sound type soundl named "quack.wav";
sound type sound2 named "moo.wav";

shape scene is
block with
move to <1 0 0>; selection_set = 1;

end;
cone with

move to <-1 0 0>; selection_set = 2;
end;

end; //scene

verb picking is
if is_shape_touched using 1 then
overlay_text "click for quack”;
reset_frame_events;
if some get_click then
soundl play; Il play sound1
end;
elseif is_shape_touched using 2 then
overlay_text "click for moo";
reset_frame_events;
if some get_click then
sound?2 play; I play sound2
end;
end;
end; // picking

anim example with

eye =<2 -8 4>;
is

mouse_controlled_shape scene doing picking;
end; // example

Figure 16.3: Using sounds

COPYRIGHT®©2006 187 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 16:

TEXT

LESSON OBJECTIVES:

= Know the different types of text available

= Know how to create 2D overlay and 3D renderable text displays

LESSON CONTENTS:

= Types of text display
= QOverlay text

= Renderable text

COPYRIGHT®©2006 189 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

TYPES OF TEXT DISPLAY

In previous examples, we’ve made use of “write” statements to print statements to the
output window in Hypercosm Studio. While this works fine for developing applets,
without Hypercosm Studio, there’s no way to view the text output. To display text
inside of the applet with the 3D graphics, Hypercosm provides two different methods:
2D overlay text and 3D renderable text.

2D OVERLAY TEXT

As you might expect, 2D overlay text is simply regular two dimensional text that is
drawn on top of the 3D graphics. When you view and applet that displays the standard
Hypercosm dock bar interface with the icons and other controls at the bottom of the
window, the text labels that you see are drawn using overlay text. To draw overlay
text, include the file “native_overlay_text.ores”, which is located in the directory
“Hypercosm Studio/Includes/Text/Overlay Text”. This file contains the interface to the
procedure, “overlay_text”. The overlay_text procedure uses parameters for the string of
characters to display, a location and various parameters that control the appearance and
font of the text.

native verb overlay_text
string type string;
at screen_coords type position =<0 0 0>;

with
string type font_family is default_font_family;
boolean bold is false;
boolean italic is false;
boolean underlined is false;
integer size = get_default_title_text_size;
horizontal_alignment type horizontal_alignment is center;
vertical_alignment type vertical_alignment is middle;
color type color = white;
boolean transparent_background is true;
color type background_color = black;

end; [/l overlay text

Figure 17.1: Definition of Overlay Text

COPYRIGHT®©2006 190 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

TEXT POSITION

The position for the text is specified in screen coordinates where <0 0 0> is at the center
of the applet window, <-1 -1 0> is at the lower left and <1 1 0> is at the upper right. The
z coordinate of the screen coordinates is not used. Note that “overlay_text” is a verb,
not a shape. The location where it draws is not affected by “move to” or other
transformations.

FONT

Overlay text draws text using a font chosen from the set of fonts available from the
operating system. The “font_family” string allows you to specify a case-insensitive
comma-separated list of font names for the Player to look for. If the “font_family” is not
specified, the Player will look for “Arial” as a default font. If “Arial” can’t be found, the
Hypercosm Player will use the system’s default font.

SI1ZE

The size parameter is in pixels and is the height of the text (the font ascent plus the font
descent). The text will be drawn using the best available match to the requested size.
It's good practice to set the size to be a fraction of your window height, so that the text is
resized proportionally if your applet is run at a different window size.

COPYRIGHT®©2006 191 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE:
“OVERLAY_ _TEXT_EXAMPLE.OMAR”

do overlay_text_example;

include "system/3d.ores";
include "system/native_overlay_text.ores";

Overlay Text!

picture overlay text_example is
overlay_text "Overlay Text!" at <0 0 0> with

bold is true;
underlined is true;
horizontal_alignment is center;
color = white;
background_color = red;
transparent_background is false;

end;
end; //overlay_text_example

Figure 17.2: Using Overlay Text

COPYRIGHT®©2006 192 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

3D RENDERABLE TEXT

While overlay text is quite useful, there are occasions where you want the text to exist in
your 3D world and to be affected by the camera, lighting and shading. This is where
renderable text is used. To use renderable text, include the file “renderable_text.ores”,
which is located in the directory “Hypercosm Studio/Includes/Text/Renderable Text/”.
Inside this file, you’ll find the definition of a shape called “text”. Note that this
definition of text is a true shape and therefore may be transformed, included in other
shapes, and have materials applied just like other shapes.

shape text
string type string;
using text_style type text_style is simple_text;
with
renderable_font_family type font_family is text_style's font_family;
boolean bold is text_style's bold;
boolean italic is text_style's italic;
boolean underline is text_style's underline;

scalar size = text_style's size;
scalar depth = text_style's depth;
scalar length = text_style's length;

horizontal_alignment type h_align is text_style's h_align;
vertical_alignment type v_align is text_style's v_align;

color type color = text_style's color;
material type material is text_style's material;
end;

Figure 17.3: Definition of Renderable Text

COPYRIGHT®©2006 193 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE:
“RENDFEFRABLE _TEXT_EXAMPLE.OMAR”

do renderable_text_example;

include "system/3d.ores";
include "system/anims.ores";
include "system/renderable_text.ores";

shape words is
text_style type stylel with
color = orange;
Size = .75;
end;

text "plain & simple & centered";

text "Underlined Text" with
underline is on;
color = light brown;
move to <0 -1.5 3>;
end;

text "left-aligned, bottom-aligned" using style1 with
move to <-3 0 1>;
h_align is left;
v_align is bottom;

end;

text "right-aligned, top-aligned" using style1 with
move to <3 0 -1>;
h_align is right;
v_align is top;
end;
end; //words

anim renderable_text_example with

eye =<-5-24 0>;
is

mouse_controlled_shape words;
end; //renderable_text_example

Figure 17.4: Using Renderable Text

COPYRIGHT®©2006 194 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 17:

2D OVERLAY GRAPHICS

LESSON OBJECTIVES:

= Be able to create 2D overlay graphics and controls

LESSON CONTENTS:

= What overlays are used for
= The overlay transformation

= Scaling overlay graphics

USES FOR 2D OVERLAY GRAPHICS

In simulation and training applications, we often find a need for “overlay” graphics.
Overlay graphics are 2D graphics that lie on top of the 3D graphics and are not affected
by the transformations of the underlying 3D scene. These kinds of overlay graphics are
typically used for displays of various kinds. The most familiar examples of this type of
display are cockpit instrument displays that are used in most flight simulators, driving
simulators, and other vehicle simulators.

COPYRIGHT®©2006 195 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

THE OVERLAY TRANSFORMATION

In Hypercosm, 2D scenes are treated as a subset of 3D scenes. They are specified in the
same way that you would specify the shapes of a 3D scene except that the geometry lies
in the X-Y plane. When the 2D shapes are to be displayed, we rely upon a utility
transformation procedure to place the 2D shapes in the 3D scene in such a way that they
are aligned and scaled properly with respect to the camera. The transformation that is
used to perform this task is the “overlay” transformation that is contained in the file
“view_alignments.ores”, which is located in the directory “Hypercosm
Studio/Includes/Viewing/”.

verb overlay
at scalar distance;
end;

Figure 18.1: The Overlay Transformation

This overlay transformation will transform your shape in such a way that a unit square
on the X-Y plane will be transformed to fill the screen. Since the overlay actually exists in
the same 3D space as the rest of the 3D scene, you must provide a distance to the overlay
which describes how far from the camera the overlay will be. This distance must be
greater than 0.

COPYRIGHT®©2006 196 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

SCALING OVERLAY GRAPHICS

Scaling overlay graphics presents a few minor challenges. As described above, the
standard overlay transformation stretches an object to fit the display window. If we
want an overlay that encompasses the entire window, then this is fine. For many
applications, however, we want the overlay to take up just a portion of the window. In
this case, we must think about how we want to specify the size of the graphic.

DEALING WITH VARIABLE WINDOW ASPECT
RATIO

Since the overlay transformation automatically scales the graphic to the size of the
window, it’s easy to specify the size of the graphic just by scaling it by a fraction of the
window width or height. The one remaining thing to think about is that if we do this,
the aspect ratio of the graphic may not be correct. The overlay method stretches an
object to fit the aspect ratio of the window. In cases where you don’t want the graphic to
stretch, you must scale the graphic by the inverse of this aspect ratio to counter this
stretching. The aspect ratio of the window can be found by the expression: (height /
width).

SPECIFYING THE OVERLAY GRAPHIC SIZE IN
PIXELS

One remaining way to specify the overlay graphic size is in pixels. Normally, we don’t
ever want to specify the width and height of a graphic in terms of pixels because we’d
like to be able to resize the applet and have all of the graphics in the Hypercosm applet
scale along with the window. However, if we do want the overlay graphic to always
remain a constant size, then we can use the window size to scale the graphic to achieve
this effect. The size of the window can be found by looking at the window size
variables, “width” and “height”, which are contained in the file “native_display.ores”.

native integer width;
native integer height;

Figure 18.2: Window Size Variables

COPYRIGHT®©2006 197 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXAMPLE: "OVERLAY_GAUGE.OMAR”

do overlay_gauge;

include "system/3d.ores";
include "system/anims.ores";
include "system/view_alignments.ores";

shape gauge with
scalar value = 0;
is
disk with color = white; end:;
triangle <0 1 0> <-.1-5 0> <.1-.5 0> with
rotate by value * 360 around <0 0 -1>;
move to <0 0 .1>; /' move dial shape above disk
color = orange;

end;
end; //gauge

shape scene with
scalar time = 0;
is
scalar gauge_size = .1, aspect_ratio = height / width;
vector gauge_location = <-.75 .75 0>, label_location = gauge_location - <0 (gauge_size * 2) 0>;

sphere;
gauge with
value = get_seconds;
scale by gauge_size along <1 0 0>;
scale by gauge_size / aspect_ratio along <0 1 0>;
move to gauge_location;

overlay at 1; Il apply overlay transformation
end;
overlay_text "Time" at label_location with /I draw label
vertical_alignment is top;
end;

end; //scene

anim overlay_gauge with

eye =<2 -8 4>;
is

mouse_controlled_animated_shape scene;
end; //overlay_gauge

Figure 18.3: An Example Overlay Display

COPYRIGHT®©2006 198 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON OBJECTIVES:

LESSON 18:

BEGINNING OBJECT

ORIENTED PROGRAMMING

= Understand the concepts of classes and objects

= Be able to create simple classes

LESSON CONTENTS:

= What is object oriented programming?

Class components
Class declarations
Class instances or “objects”
Calling an object’s methods

Constructors

COPYRIGHT®©2006 199

HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

WHAT IS OBJECT ORIENTED
PROGRAMMING

Object-oriented programming (OOP) is mainly a way to organize and package code so
that it can be more easily managed, maintained, and reused. Although languages such
as C++ make object oriented programming quite complex and the terminology used to

describe the features of these languages is often confusing, the basic concepts of object

oriented programming are quite simple.

CLASSES

The basic idea behind object oriented programming is that instead of having the data
and instructions for each conceptual entity spread throughout the program or grouped
together simply by convention, there ought to be a way that you can explicitly group
together the data and instructions which belong to a particular idea and package them
as one complete description of that idea. This conceptual unit is called a “class”.

CLASSES AND OBJECTS

A class is a way of describing a conceptual entity. When we actually write a program,
however, we deal with things not as conceptual entities, but as concrete instances of
those entities. For example, a class might describe the concept of a “list”. However,
when we actually run a program, we are interested not in lists as a concept, but in
actually creating and using specific lists. When we create a specific instance of a class, it
is called an “object”. Objects are instances of classes.

ANALOGIES FOR CLASSES

Perhaps a useful way to look at classes and objects is by analogy with Plato’s concept of
Ideals. Plato thought that reality could be described as a series of platonic ideals that
captured the essence of things that are actually present in reality. For example, he
thought that there is an idealized concept of a tree that is independent of any specific
tree (this also ties into DNA). This is similar to the idea of classes and objects. The class
is sort of like the Platonic ideal, whereas the object is sort of like the manifestation of the
Platonic ideal in reality. The class is a template for an object — the DNA, if you will.

COPYRIGHT®©2006 200 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

CLASS COMPONENTS

The two main components of the class are (1) the data that are used to represent an
object and (2) the instructions that describe what that object can do.

DATA — MEMBER VARIABLES

The data consists of a number of variables that are called “member” variables. These are
declared just like regular variables except that they are part of the class. In most cases, a
new set of these variables is created each time we create an instance of that class (object).

INSTRUCTIONS - METHODS

The instructions that belong to the class are packaged as a series of procedures or
functions. These procedures and functions are known as “methods”. Sometimes they
are also called “member functions”. These methods are declared just like regular
procedures and functions and work similarly except that they can access the member
variables of that class.

CLASS DECLARATIONS

Class declarations can be fairly complex constructions since they may be composed of a
number of fields and methods. To make class declarations easier to read, in OMAR
they are broken up into two parts: the interface and the implmentation. Note that this is
different from languages such as Java and C# where the class declaration has no specific
interface section.

subject <name>

does
<method declarations> Il The interface portion:

has
<member declarations>

is /I The impementation portion:
<declarations>

end;

Figure 19.1: The Basic Class Declaration

COPYRIGHT®©2006 201 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

In the OMAR language, classes are called “subjects” in keeping with the English
language paradigm where a subject is an object that is the origin of a predicate
consisting of a verb and possibly more arguments (parameters). This will become
clearer as we begin to write some object oriented code.

THE INTERFACE

When using a particular class, we ought to be able to view only the information that tells
how the class is to be used and to skip the implementation details of the class. This idea
should already be familiar from the procedure and function declarations that we have
been using. You can use a procedure just by knowing the name and parameters that the
procedure accepts without knowing the details of the implementation. In a similar way,
the class declaration lists the names and parameters of all available methods at the top
without including their implementations.

THE INTERFACE

The complete declarations of all methods complete with implementations are given in
the last section of the class declaration where all of the inner workings and details of the
class must be defined.

CLASS INSTANCES OR “OBJECTS”

As described before, classes are like templates for objects — they describe how those
objects are represented and what they can do, but classes don’t actually do anything by
themselves. In order to actually do something with a class, you must make an
“instance” of the class or “object”.

<class name> type <variable_name>;

Figure 19.2: Creating an Instance of a Class

COPYRIGHT®©2006 202 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

subject circle
does
/I methods
Il

verb set_radius
to scalar radius;
end;
scalar question get_circumference;
scalar question get_area;

verb print;
has

/I members

Il

scalar radius = 1;
is

Il implementation
Ik
verb set_radius
to scalar radius;
is
circle’s radius = radius;
end; /I set radius

scalar question get_circumference is
answer 2 * pi * radius;
end; // get_circumference

scalar question get_area is
answer pi * radius * radius;
end; //get area

verb print is

write “circle with radius =, radius, ", circumference =", get_circumference,

", area =", get area, ;
end; /[print
end; [/l circle

Figure 19.3: An Example Class

circle type circle;
circle type circlel, circle2;

Figure 19.4: Example Class Instances (Objects)

COPYRIGHT®©2006 203

HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

CALLING AN OBJECT'S METHODS

In OMAR, to invoke an object's method, you simply state the name of the object
followed by the method name and the method's parameters, if any. Note that the dot
operator is not required as it is in Java or C++. The name of the method simply follows
the name of the object. In OMAR, when one these “objects” is used in conjunction with
one of its methods, then it is known as a “subject” because from the standpoint of
English grammar, this is a more accurate description of its role in the statement.

circle type circle; Il create an object that we can call methods on
circe set_radius to 10; Il call a procedure method (verb)
write "circle’s area =", circle get_area, ; Il call a function method (question)

Figure 19.5: Calling an Object’s Methods

A COMPARISON WITH ENGLISH LANGUAGE
GRAMMAR

When calling methods on objects, the similarities between the OMAR language syntax
and the English language sentence structure become apparent. This is no accident and
helps contribute to much more readable code.

Sentence Structure English Language OMAR Language

Verb Stop! quit;

Verb - Object(s) Find lawyers, guns, and money. rotate by 100 around x_axis;
Subject - Verb Fred writes. circle print;

Subject — Verb — Object(s) Fred wrote my term paper. circle set_radius to 5;

Figure 19.6: Comparison with English Language Grammar

CONSTRUCTORS

In the example above, creating a new instance of the circle class was a simple matter of
stating the type name followed by the instance name of the new object. For more
complex objects, however, it’s often desirable to perform some kind initialization
procedure every time that a new instance is created. This initialization procedure is
called a constructor. Constructors are differentiated from the other methods in a class by

COPYRIGHT®©2006 204 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

reserving the name “new” for constructors. Any method that you declare which is
named “new” will be invoked every time an instance of this class is created.

subject circle
does
/I methods
I

verb new with
scalar radius = 1;

end;
has

/I members

Il

scalar radius = 1;
is

Il implementation
[li
verb new with
scalar radius = 1;
is
circle’s radius = radius;
end; //set radius
end; [/l circle

Figure 19.7: An Example Constructor

If a class has a constructor defined, then whenever you make an instance of that class,
the constructor is called. If the constructor method has parameters defined, then your
object declaration must supply values to those parameters when the object is created.

circle type circle; Il constructor is called, but its optional parameters is not specified

circle type small_circle with Il constructor is called with a value of .5 for the radius parameter
radius = .5;

end;

circle type large_circle with I constructor is called with a value of 100 for the radius parameter
radius = 100;

end;

Figure 19.8: Calling A Constructor

COPYRIGHT®©2006 205 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 19:
INTERMEDIATE OBJECT

ORIENTED PROGRAMMING

LESSON OBJECTIVES:

= Know how to create a subclass by extending an existing class
= Understand how dynamic binding works

= Know how to declare and implement class interfaces
(“adjectives”)

LESSON CONTENTS:

= Code Reuse

= [nheritance

= Extending a class

= Constructor chaining
= QOverriding methods

» |nterfaces

COPYRIGHT®©2006 207 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

CODE REUSE

There exists, out there somewhere, code for doing just about every imaginable thing.
Programs, however, are very complex, intricately connected things, like the spaghetti
wiring inside of an old stereo system. If you want a particular set of features in your
program, you often find that it is easier (and less error prone and dangerous) to rewrite
everything from scratch than to modify an existing program. Obviously, this is one
reason why software creation is so time consuming and expensive. Object oriented
programming is an effort to make code more reusable and more robust.

INHERITANCE

The basic idea behind inheritance is that you can create classes that are derived from
existing classes instead of writing each one from scratch. These derived classes inherit
the functionality of the class that they are derived from (the parent class), but they may
also extend or override the functionality of their parent class. If a class extends another
class, then it may have additional data and / or methods that the parent class does not
have. Experienced object oriented programmers know that one of the most difficult
things about designing well structured code is to carefully build these class hierarchies,
so that each class neither does too much nor does too little. If the class does too much,
then it is overly difficult and cumbersome to use. It the class does too little, then you
end up with lots of little classes, each only slightly different and hard to distinguish, and
the program once again becomes difficult to understand.

SINGLE INHERITANCE

In OMAR, each class can have just one parent class. This is how inheritance is handled
in many other languages such as Java and C#. A few other modern languages allow a
class to have multiple parent classes. This is known as “multiple inheritance”. Thisis a
powerful feature, but causes a number of complications and problems, which is why
OMAR uses the single inheritance model.

COPYRIGHT®©2006 208 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

EXTENDING A CLASS

To add new features to an existing class, you create a new class that extends the features
of the old class. This new class is known as a “subclass” because it is a more specific
version of the more general class that it was derived from. This terminology may be a
little confusing because a “subclass” actually has a superset of the functionality of its
parent class. A subclass is less general but has more methods and members than its
parent class. To create a new subclass, use the following format:

subject <class name>

extends
<parent class name> Il Class that this class is derived from
does
<method declarations> Il The interface
has
<member declarations>
iS /I The impementation
<declarations>
end;

Figure 20.1: Extending a Class

All classes are considered to be implicitly derived from a base class, the “object” class.

If you don't have an “extends” clause in your class declaration, there is an invisible
“extends object” clause which is implicitly added for you. Note that when you extend a
class, you inherit not only the functionality of the immediate superclass, but you also
inherit the functionality of every superclass all the way back to the “object” class. The
way to think about it is that if class B extends class A, then an instance of B IS an
instance of A. For example, if you have an “employee” class that extends the class,
“person”, then each employee IS a person. Likewise, if you extend the employee class by
an “executive” class, then each executive IS also an employee and IS a person.

COPYRIGHT®©2006 209 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

CONSTRUCTOR CHAINING

When we create a new class by extending an existing class, we inherit all of the fields of
that existing class and therefore, we must make sure that the integrity of those fields is
maintained. This leads to the requirement that constructors must be called not only to
initialize the fields of objects of their own class, but also to initialize the fields of objects
belonging to any classes that are derived from this class. This is known as “constructor
chaining”. The way that this is enforced is to require the first line of any constructor
which belongs to a class with a superclass constructor to call that superclass constructor
before doing anything else.

subject subclass
extends
superclass /I This is a class with a constructor defined
does
verb new; /I This subclass must have its own constructor defined since
has I'its superclass has a constructor defined
integer stuff;
is
verb new is /I The first line of the subclass’s constructor must be a call
superclass new; Il'to its superclass'’s constructor to initialize its inherited fields
stuff = 0; /I After, we can initialize the subclass’s noninherited fields
end;

end; /[subclass

Figure 20.2: Constructor Chaining

COPYRIGHT®©2006 210 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

subject person

does

has

end;

verb new
named string type name;
end; //new

string type question get_name;

string type name;

verb new

named string type name[];
iS

person's name = name;
end; //new

integer question get_name is
answer name;

end; //get_name

Il person

subject employee

extends

does

has

end;

Figure 20.3: Example of Extending a Class

person

verb new
named string type name;
paid integer salary = 0;
end; //new
integer question get_wages;

integer salary;
verb new

named string type name;
paid integer salary = 0;

is
person new named name;
employee's salary = salary;
end; //new

integer question get_wages is

answer salary;
end; // get wages
Il employee

COPYRIGHT®©2006

211

/I Call superclass constructor

HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

OVERRIDING METHODS

Sometimes, when we create a new subclass, we find that an inherited method is not
quite what we want and we can provide a new definition for the inherited method that
is more specific to the new subclass. This process of substituting a new method for one
that has been inherited is known as “overriding”. To override an inherited method, all
we have to do is to define a new method for the subclass that has the same name and
parameters as an inherited method. When an instance of this derived class calls the
method of this name, the new method will be called instead of the inherited one.

subject executive
extends
employee
does
verb new
named string type name;
paid integer salary = 0;

with
integer stock_options = 0;
end; //new
integer question get wages; /I Overridden method
integer question get_perks;
has
integer stock_options;
is

verb new
named string type name;
paid integer salary = 0;

with
integer stock_options = 0;
is
employee new named name paid salary;
executive's stock_options = stock_options;
end; //new

integer question get wages is
answer salary + stock_options;
end; /[get wages

integer question get_perks is
answer stock_options;
end; /[get perks
end; // executive

Figure 20.4: Extending a Class and Overriding Methods

COPYRIGHT®©2006 212 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

DYNAMIC BINDING

When you create a new class using inheritance, you expect that if you have provided
this class with a replacement method to override an existing method from its parent
class, then the new method will be called instead of the old one. Dynamic binding is a
fancy term for the technique that is used internally to make this happen. Using this
technique of overriding methods and using “dynamic binding” to select the correct
method to use, you can write very generic code and then let the objects, themselves,
decide the appropriate method implementation to use. For example, suppose that you
had to write a program to compute the payroll from a list of employees. You would
need to have different routines to compute the wages of each type of employee. To
implement this in an object-oriented manner, you could build a class hierarchy where
there was a basic employee class plus more specific subclasses for different types of
employees (such as executives, contractors, etc.). Each different type of employee could
have a different method for computing his or her wages depending upon the type of
employee. By structuring the code in this way, the payroll application would not have
to be concerned with the details of how each employee computed his or her wages, it
would simply call a method to compute wages and then defer to the employee class for
the particular implementation. Using object-oriented programming, this is
automatically handled in a way that is intuitive and elegant.

I Employees of different types

i

employee type grunt named "bill", secretary named "suzie", salesperson named "maggie",
manager named "joe";

executive type president named "leo”, ceo named "barb”;

/I Table of employees
I
employee type staff[] = [grunt manager president secretary ceo salesperson;

Il Code to sum wages of staff

i

integer sum = 0;

for each employee type employee in staff do

Il Here, get_wages will either execute the employee's implementation or
Il the executive's implementation depending upon the type of the employee
i
sum = itself + employee get_wages;
end;

Figure 20.5: Example of Using Dynamic Binding

COPYRIGHT®©2006 213 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

INTERFACES

We have already seen how we can extend classes through inheritance. There exists
another way that we can extend our classes: through a mechanism known as
“interfaces”. In the OMAR programming language, interfaces are called “adjectives”.
An interface (or “adjective”) consists of a collection of method interfaces. This is similar
to the list of method interfaces that are typically found in the “does” section of a class.
Any class that “implements” an interface must provide implementations of each of the
methods described in that interface. When a class implements a particular interface, it’s
basically like a promise that the class will have the set of functionality described in the
interface. That is why interfaces are called “adjectives” in OMAR. They basically
describe a certain set of functionality that a class may have without describing anything
about how that class is supposed to implement that functionality.

adjective <adjective name>
does

<method declarations>
end;

Figure 20.6: Declaring an Interface (“Adjective”)

In order to have a class implement a particular interface, we must first list the interface
in the “extends” clause, before the name of the parent class.

subject <class nhame>
extends
<adjective names> <parent class name>

does
<method declarations> Il The interface

has
<member declarations>

is /I The impementation
<declarations>

end;

Figure 20.7: Implementing an Interface (“Adjective”)

COPYRIGHT®©2006 214 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

adjective printable

does

end;

verb print;

subject person

extends

does

has

end;

printable object

verb new
named string type name;
end; /I new

string type question get_name;
verb print;

string type name;

verb new

named string type name[];
is

person’'s name = name;
end; //new

integer question get_name is
answer name;
end; /[get name

verb print is

write "person named ", name, ;

end; //print
Il person

/I This method must be here because the person
/I class implements the printable interface which
Il contains the print method

Figure 20.8: Example Declaring and Implementing an Interface

COPYRIGHT®©2006

215

HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 20:
OBJECT ORIENTED

ANIMATION

LESSON OBJECTIVES:

= Understand how to create actors

LESSON CONTENTS:

= Principles of object oriented animation
= Actors

* Mouse controlled actors

= Actor animation

= Timers

= Timed actors

COPYRIGHT®©2006 217 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

PRINCIPLES OF OBJECT ORIENTED
ANIMATION

We have seen how object oriented programming is concerned with the description and
creation of “objects” that each have certain sets of behaviors that are described through
the methods that they implement. This notion of objects is well suited to programming
animation because we can create a scene composed of objects that have methods for
displaying themselves as well as methods for animating themselves and triggering other
behaviors.

ACTORS

The most basic type of object in an object oriented animation is known as an “actor”. An
actor is basically any object that “knows” how to render itself and therefore display itself
in a 3D scene. In order to make objects renderable, we require that they implement the
renderable interface, which is declared in the file “rendering.ores”. The renderable
interface has only a single method, “instance”, which causes the object to create an
instance of itself in a scene. This instance method is a shape and therefore can be
transformed and have materials applied just like any other shape.

adjective renderable
does

shape instance;
end;

Figure 21.1: The Renderable Interface

subject actor
extends

renderable object
does

shape instance;
end;

Figure 21.2: An Actor Declaration

COPYRIGHT®©2006 218 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

MOUSE CONTROLLED ACTORS

Once you have created an actor, you can add mouse interactivity to enable you to
manipulate the actor using the mouse controls in a similar way to the
“mouse_controlled_shape” utility that was used previously. This is done by using the
mouse_controlled_actor utility. To use this utility, simply include the file “anims.ores”
just as described earlier when using the mouse_controlled_shape.

do example;

include "system/3d.ores"; Il for core 3D rendering functionality
include "system/anims.ores"; /I for mouse_controlled utilities

subject actor
extends
renderable object
does
shape instance;
iS
Il actor implementation goes here
end; /[actor

anim example
iS
actor type actor; Il create an instance of the actor
mouse_controlled_actor actor with /I pass actor to mouse_controllec_actor
auto_camera is on; I utility to add interactive mouse controls
end;

end; /[example

Figure 21.3: Using a Mouse Controlled Actor

ACTOR ANIMATION

Actors often require the ability to execute some code each frame in order animate
themselves. This is easily accomplished by having your actors implement the

COPYRIGHT®©2006 219 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

“updateable” interface. The updateable interface has only a single method, update,
which performs the animation code and is called once per animation frame.

adjective updatable
does

verb update;
end;

Figure 21.4: The Updatable Interface

subject actor
extends
renderable updatable object
does
shape instance;
verb update
end;

Figure 21.5: An Updateable Actor Declaration

TIMERS

The animated actors that we previously described have the ability to animate themselves
by executing a piece of code each frame. In previous sections, we learned that for
animation to be consistent from machine to machine, it needs to be “time based” rather
than “frame based”. To more easily create time based object oriented animations,
Hypercosm provides a series of timers that allow the passage of time depicted by an
actor to be easily controlled. These timers are located in the directory “Hypercosm
Studio/Includes/Time/Timers”. The standard timers provided are as follows:

Timer Name Description

clock_timer Updates itself using the system clock.
stopwatch_timer A clock_timer that may be paused

timer A stopwatch_timer that may run at a variable rate
interval_timer A timer that has a particular duration

cycle_timer An interval_timer that repeats through a cycle

Figure 21.5: Standard Timers

COPYRIGHT®©2006 220 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

TIMED ACTORS

The basic structure of a timed actor is shown below. Note that in the actor’s update
method, we must be sure to remember to update the timer.

subject actor
extends
renderable updatable object
does
shape instance;
verb update;
has
timer type timer;
is
verb update is
timer update;
end;
end;

Figure 21.5: A Timed Actor Declaration

COPYRIGHT®©2006 221 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 21:
INTEGRATING WITH

JAVASCRIPT

LESSON OBJECTIVES:

= Understand how to communicate from a Hypercosm applet to a
web page

= Understand how to communicate from a web page to a
Hypercosm applet

LESSON CONTENTS:

= JavaScript for integrating web application components

= Communicating from a web page to a Hypercosm applet
o0 Sending messages from a web page to a Hypercosm applet
0 Listening for messages in a Hypercosm applet

= Communicating from a Hypercosm applet to a web page

COPYRIGHT®©2006 223 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

JAVASCRIPT FOR INTEGRATING WEB
APPLICATION COMPONENTS

As web applications get more and more complex, developers find that it’s not feasible to
create the entire web application using a single tool. The best solution is often to create
a web application using a variety of tools. This allows each component to be created
using the tools that are most appropriate. It may make sense to have some user interface
components implemented in Macromedia Flash connected to some graphical 3D
components that are implemented using Hypercosm and some networking components
implemented using Java. JavaScript serves as a sort of universal “glue” for connecting
these various web based components together and for sending information between
them.

HTML Web page

Java Flash

A
A 4

A 4 A 4

Hypercosm

Figure 22.1: JavaScript for Connecting Web Components

COPYRIGHT®©2006 224 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

COMMUNICATING FROM A WEB PAGE
TO A HYPERCOSM APPLET

Hypercosm makes it possible to communicate information from a web page into a
Hypercosm applet that is a component on that web page. This is done using a message
passing mechanism. The messages that are passed into the Hypercosm applet consist of
strings of characters only. There are two parts to this mechanism:

1) There must be JavaScript code in the web page that sends messages from the web
page to a Hypercosm applet.

2) There must be code in the Hypercosm applet to listen for messages and then to
act upon messages that are received and recognized.

SENDING MESSAGES FROM THE WEB PAGE TO
THE HYPERCOSM APPLET

The task of sending messages from the web page to a Hypercosm applet is illustrated by
the code below:

<SCRIPT LANGUAGE="JavaScript">
var InternetExplorer = navigator.appName.indexOf("Microsoft") != -1;

function GetPlugin()
{

}

function SendMessage(message)

{

}
</SCRIPT>

return InternetExplorer ? window.HyperX1 : window.document.HyperX1;

GetPlugin().SendMessage(message);

Figure 22.2: Sending Messages from the Web Page To A Hypercosm Applet

COPYRIGHT®©2006 225 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LISTENING FOR MESSAGES IN A HYPERCOSM
APPLET

The task of listening for messages in a Hypercosm applet is made possible by a pair of
native methods that is included in the file “native_messages.ores”, which is located in
the directory “Hypercosm Studio/Includes/Utilities/Messaging/”. The first of these
methods, “get_message_number”, is used to return the number of messages that are
waiting on the message queue. The second method “get_next_message”, returns the
next message from the queue.

/I This method returns the number of messages
Il that are waiting on the message queue.

Il

native integer question get_ message_number;

Il This method returns a message from the message
Il queue and also removes it from the queue.

Il

native string type question get_next_message;

Figure 22.3: Message Listening Methods

In order to use these methods in your Hypercosm applet, you will usually want to create
a message handling loop that checks to see if there are any messages and if so, retrieves
and interprets those messages. An example message handling loop is shown below:

verb check_messages is
while get_message_number > 0 do
string type message is get_next_message;

if message matches command then
Il do something
end;
end;
end; // check_messages

Figure 22.4: Message Checking Hypercosm Script Code

COPYRIGHT®©2006 226 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

COMMUNICATING FROM A
HYPERCOSM APPLET TO A WEB PAGE

The second part of the problem is communicating information from the Hypercosm
applet back out to the web page. Once this information is received by the web page, it
may be routed to other components on the web page including Flash, Java, or even other
Hypercosm components. Communicating information out to the web page is done
using a simple command “exec_script” that is found in the file
“native_exec_script.ores”, which is located in the directory “Hypercosm
Studio/Includes/Utilities/JavaScript/”.

/I This will execute script when the player is in
/I plugin mode.
Il example: exec_script "changeCol(‘#cc0000")" "JavaScript";
Il example: exec_script "alert('Hello)" "JavaScript";
Il
native verb exec_script
string type code;
string type language;
end;

Figure 22.3: JavaScript Calling Method

The code string that is the first parameter of the exec_script method is the text of a
JavaScript method call and its parameters. If the Hypercosm applet is not run from
inside of a web page, then this command will have no effect.

COPYRIGHT®©2006 227 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

LESSON 22:

EXTERNAL DATA FILES

LESSON OBJECTIVES:

= Understand the issues involved in working with external files

= Be able to download and process external text data files

LESSON CONTENTS:

= Why read data from external files?
= Text file resources
= Downloading text file resources

= Cetting text data from a text file resource

COPYRIGHT®©2006 229 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

WHY READ DATA FROM EXTERNAL
FILES

Any data that we can read in from an external file, we could also just compile into an
applet. However, reading the data from an external text file allows the data to be
changed at a later date without requiring the applet to be recompiled. This allows
content to be created in a way that is much more flexible and maintainable.

TEXT FILE RESOURCES

We have seen how applets can have a variety of external data resources associated with
them, such as graphics and sound files. Text files are handled in a similar way. To use
an external data file in Hypercosm, you must first create a text file object that references
an external text file. The definition of the text file objects is stored in the file
“text_file_resources.ores”, which is located in the directory “Hypercosm
Studio/Includes/Utilities/Networking/Data Resources/”.

text_resource type <resource name> named <file name>;

Figure 23.1: Creating a new text file resource

DOWNLOADING TEXT FILE RESOURCES

One of the issues in dealing with external data file resources is that they are not
guaranteed to be ready to use when the applet starts. These resources are all
downloaded over the internet independently of the applet file and if they are large, then
they can take a considerable time to download before they can be used. When you write
your applet code to use these resources, you must be mindful of this fact. There are two
ways that you can deal with the situation. These two ways are refered to as “blocking”
and “non-blocking”.

BLOCKING DOWNLOADING

The easiest way to deal with the resource downloading issue is simply to have the
applet stop and wait until the text file resource is downloaded. This works fine for small

COPYRIGHT®©2006 230 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

resources because the time that it takes to download them is small and the user will
most likely not notice the tiny delay in the applet startup. To block the applet from
running, simply call the text resource’s method “finish_loading” to wait until the
resource has finished downloading. Until this call returns, the applet will remain
stopped.

subject data_resource
extends

downloadable object
does

Hétive verb finish_loading;
end;

Figure 23.2: Blocking Resource Download Method

text_file_resource type text_file_resource named "data.txt";

text_file_resource finish_loading;

Figure 23.3: Using Blocking Resource Downloading

NON-BLOCKING DOWNLOADING

The second way of dealing with the downloading issue is to query the resource to see if
it is ready and if not, temporarily skip the code that relies upon it. This technique is nice
because it enables the applet to continue to run while the file is downloading. To query
the applet, use the download_status function.

enum download_status is downloading, ready, ready _bad_fingerprint, failed;

subject data_resource
extends

downloadable object
does

native download_status type question download_status;
end;

Figure 23.4: Non-Blocking Resource Download Method

COPYRIGHT©2006 231 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

text_file_resource type text_file_resource named "data.txt";

verb update is
if text_file_resource download_status is ready then
Il process the data
else
/I do nothing
end;
end;

Figure 23.5: Using Non-Blocking Resource Downloading

GETTING TEXT DATA FROM A TEXT
FILE RESOURCE

Once the text file resource has been downloaded, we can then get the text data from it.
To do this, use the method “get_lines” to retrieve an array of strings that represent the
lines of text in the text file.

subject text_file_resource
extends

data_resource
does

strings type question get_lines;
end;

Figure 23.6: Blocking Resource Download Method

COPYRIGHT©2006 232 HYPERCOSM LLC

HYPERCOSM STUDIO TRAINING COURSE NOTES

text_file_resource type text_file_resource named "data.txt";

strings type text;

text_file_resource finish_loading; Il load text file resource

text is text_file_resource get_lines; Il retrieve contents of text file resource

for each string type string in text do Il write out contents of text file resource
write string;

end;

Figure 23.7: Processing Text Data From a Text File Resource

RIS

7
NOTES:

There are a set of “parsing” utilities to help you with the task of parsing text from data
tiles and other sources. These parsing utilities are located in the directory
“Hypercosm Studio/Includes/Utilities/Parsing/”.

COPYRIGHT®©2006 233 HYPERCOSM LLC

