
Computer Graphics, 26, 2, July 1992

Interactive Inspection of Solids: Cross-sections and Interferences

Jarek Rossignac, Abe Megahed, Bengt-Olaf Schneider
interactive Geometric Modeling, IBM T.J. Watson Research Center

Abstract
To reduce the cost of correcting design errors, assem-
blies of mechanical parts are modeled using CAD sys-
tems and verified electronically before the designs are
sent to manufacturing. Shaded images are insufficient for
examining the internal structures of assemblies and for
detecting interferences. Thus, designers must rely on
expensive numerical techniques that compute geometric
representations of cross-sections and of intersections of
solids. The solid-clipping approach presented here by-
passes these geometric calculations and offers realtime
rendering of cross-sections and interferences for solids
represented by their facetted boundaries. In its simplest
form, the technique is supported by contemporary high-
end graphics workstations. Its variations, independently
developed elsewhere, have already been demonstrated.
Our implementation is based on the concept of a cut-
volume interactively manipulated to remove obstructing
portions of the assembly and reveal its internal structure.
For clarity, faces of the cut-volume which intersect a sin-
gle solid are hatched and shaded with the color of that
solid. Interference areas between two or more solids are
highlighted. Furthermore, to help users find the first oc-
currence of an interference along a search direction, we
have developed an adaptive subdivision search based
on a projective approach which guarantees a sufficient
condition for object disjointness. The additional perform-
ance cost for solid-clipping and interference highlighting
is comparable to the standard rendering cost. An efficient
implementation of the disjointness test requires a minor
extension of the graphics functions currently supported
on commercial hardware.

CR Categories and Subject Descriptions:
1.3.3 [Computer Graphics]: Picture/Image
Generation -Display Algorithms; 1.3.5 [Computational
Geometry and Object Modeling]: Solid Representation;
1.3.7 [Three-Dimensional Graphics and Realism]: Visible
Surface Algorithms; J.6 [Computer Aided Engineering]:
Computer Aided Design.

Keywords: Cross-section, Clipping, Interferences.

Authors’ address:
IBM Research, P.O. Box 704, Yorktown Heights, NY 10598.
Rossignac: jarek@watson.ibm.com, 914-784-7630.
Schneider: bosch@watson.ibm.com, 914-784-6002.

Permkon 10 ~~,py wthout fee all or part of this material is granted

provided rhar the copes arc not made or distributed for direct

commcrc~al adbantagc. the ACM copyright notice and the title of the

puhllcation and II\ date qxnr. and notice i\ given tha copying is by

pcrm~hhmn (11 Ihc ,Aw>cutlon tiw C’omputmg Machmcry. To copy

othcrwiw. or III repuhlkh. reqmre\ a kc and/or qw5tic permission.

(I’)‘)? ~ZcM-0-X’)7’)1-~7Y-l~Y~~~M)7/03s~ $01.50

1. Introduction
Design errors discovered at the manufacturing or as-
sembly stages result in expensive engineering changes
and production delays. Manufacturers of mechanical
goods have invested in advanced graphics hardware and
in the solid modeling technology hoping that they will
eliminate the need for clay models and drastically reduce
the number of design errors prior to fabrication. Although
designers can interactively visualize subsets of an as-
sembly using shaded or wireframe pictures, they need
cross-sections and interference highlights to understand
how components fit together in tight assemblies. For
example, the shaded image of the small assembly in
Figure 1 may be produced in realtime on most high-end
graphics workstations, but reveals neither the internal
structures of the assembly nor the interferences between
its components.

Figure 1. A small mechanical assembly: The interference be-
fween the cylinder end the connecting rod is not apparent.

The availability of an informationally complete solid
modeling representation of each assembly component
permits the automatic calculation of cross-sections and
the calculation of interferences. Unfortunately, classical
implementations of these functions rely on expensive
geometric operations, which, when applied to models of
industrial complexity, increase the system’s response
time far beyond tolerable limits for interactive sessions,

This paper describes new techniques for automatically:
(1) filling and shading multi-facetted cross-sections
through solids, (2) identifying and hlghlighting areas of
interference In a cross-section, and (3) posltloning cross-
sectioning planes at the beginning of interference or
contact regions.

353

SIGGRAPH ‘92 Chicago, July 26-31, 1992

The solid-clipping techniques presented here exploit ex-
isting graphics architectures in novel ways to create, in
realtime, shaded images showing cross-sections, cut-
outs, and interference regions. Cut-outs are discussed in
Section 2. Interferences are addressed in Section 3. The
result of a combination of these techniques is illustrated
in Figure 2, where a portion of the assembly was cut away
using a user-specified cut-volume and where the inter-
ference region between the two components was high-
lighted in red. Furthermore, the cross-section areas are
hatched for clarity and the cut-away portions are indi-
cated using transparent faces and silhouette lines.

Figure 2. Graphics inspection techniques: A mu/t/-facet cut-
volume Is removed to show the internal structure of the assem-
bly. The resulting cross-sections are displayed in the appropriate
co/or and hatched. Red areas indicate interferences.

These techniques are based on clipping planes and on
auxiliary bit-planes that are manipulated during the
standard surface scan-conversion to create and later ex-
ploit appropriate pixel-masks. They exhibit realtime per-
formance for simple assembly models.

A solution similar to ours for cross-section filling and in-
terference highlights has been independently developed
at Silicon Graphics Inc. by Kurt Akeley in 1991 [l]. It is
discussed in Section 3.1. Hewlett Packard’s graphics li-
brary also offers filling and interference highlights, but
no description of the underlying techniques is available.
Since the manual mentions “the collection of capping
edge data” and “cap polygons” [S], we conjecture that
an approach different from ours is used.

The automatic detection of interferences is described in
Section 3.2. Its requires feedback from the graphics
hardware to the application. An efficient implementation
of this feedback loop is not supported on commercially
available workstations; thus we simulate it by a software
inspection of the frame buffer.

2. Solid-clipping
This section describes a new technique for computing in
realtime images of solids, or of assemblies of solids, from
which user-controlled linear half-spaces or polyhedral
cut-volumes have been subtracted. The technique lever-
a

35%
es on the recent support of auxiliary clipping planes

and pixel-masks in the rendering pipeline of high-end
graphics workstations [13].

Clipping planes are commonly used for surface-clipping,
i.e. to trim the objects’ faces prior to display. The differ-
ence between the solid-clipping technique presented in
this section and the previously available surface-clipping
is illustrated in Figures 3 and 4 using a single-face cut-
volume, i.e. a volume bounded by a single clipping plane.
Figure 3 shows the effect of the standard surface-clipping,
which treats each solid as a hollow shell, because clip-
ping planes do not fill pixels, but merely limit the extent
of faces. The image is confusing, since the viewer must
mentally reconstruct the areas where the clipping plane
intersects the solids. Figure 4 shows the result of the new
solid-clipping technique, which, in addition to clipping the
solids’ faces, also fills the regions of intersection between
each solid and the clipping plane. These cross-section
regions are hatched to visually differentiate them from
other surfaces in the assembly.

Figure 3. Surfacecllpping: The standard surface-clipping tech-
nique correctly removes portions of the solids’ faces, but does
not fill in the cross-section areas.

Figure 4. Solid-clipping: In addition to the surface clipping of
Figure 3, the cross-section of each solid by the clipping plane is
hatched and shaded using the color of the solid.

Computer Graphics, 26, 2, July 1992

A standard way to produce the image of Figure 4 is to

perform the Boolean difference operation between the

solids and the cut-volume and to display the result. A

slightly better approach combines surface clipping with

the display of a cross-sections computed as the geomet-

ric intersection of the solid with a plane [7]. A CSG for-

mulation of the result may also be us&d with

special-purpose direct CSG rendering hardware

[3-5, 11],

The technique described in this section provides an al-

ternative which neither requires the hardware used for

efficiently rendering CSG models nor any complex ge-

ometric intersection calculations. It works with any

boundary representation for solids, provided that the

scan-conversion method used by the graphics hardware
satisfies the following parity condition,

Men the entire solid fits between the front and the back
clipping planes, each pixel is visited an even number of

times during the scan-conversion of the soiid’s faces.

Eariy scan-conversion techniques did not guarantee the

parity condition at pixeis traversed by the projection of

a common edge between two faces, A reiiable imple-

mentation of the methods presented here requires a

“true point-sampiing” scan-conversion [9].

To estabiish which points of a clipping plane lie inside any

given soiidl we use the foiiowing property [14].

A point Q iies inside a bounded soiid S if and only if Q is

not on the boundary of S and if a semi-infinite iine (ray)

starting at Q intersects the boundary of S at an odd

number of isoiated transversal intersection pointsl. Since

the resuit is independent of the direction for the ray, the

viewing direction may be used. Suppose that the location

of (2 is stored in the z-buffer as Z(q), the depth of the pixel

q corresponding to the projection of Q onto the screen.

Q Iiea in the interior of S if and oniy if the number of times

q is visited during the scan-conversion of the faces of S

with a depth greater than Z(q) is odd.

Furthermore:

A point Q, projecting on a pixel q and lying on a clipping

plane C, ia inside a solid S if and only if q ia visited an odd

number of times whiie scan-converting the faces of S af-

ter they have been ciipped using C.

Note that aii points Q of C that correspond to pixels of the

screen may be classified during a singie pass over S, We
use the above property to construct a pixel mask (one bit

per pixel), Mp, for the cross-section region where the

clipping piane intersects any given soiid. The process is

illustrated in Figure 5.

When the outward normai of a cut-volume face points

away from the viewer, it corresponds to a potential front

face of the soiid resulting from the cut. Therefore, we use

the term front clipping plane when referring to the pianes

containing such a back face of the cut-voiume. We need

to fiil oniy the cross-sections of front ciipping pianes, be-

cause other (back) ciipping pianes are never visibie.

To make the classification results consistent with the

mathematical definition of the regularized difference be-
tween the originai soiid and the cut-voiume [8], the clip-

ping of faces coincident with the ciipping plane must be

performed using a “iess than” depth test for clipping
pianes and a “less or equai” depth-test otherwise.

The technique assumes that the soiids are not clipped by

the back piane of the viewing volume. if the depth span

of the object is known, it suffices to temporarily adjust the

back plane. However, changes to the z-resolution may

produce side-effects. It is also possible to set the per-

spective such that the back plane coincides with the ho-

rizon,s to guarantee that no object is ciipped by the back
clipping-piane.

Semen Ac

.-

—.. odd

—-even

—.. odd

Figure 5. Parity-based mask construction: The pixel-mask, Mp,
for the iritersectlon of plane C with so/id S /s computed by togg/-
irrg the mask durhrg the scan-conversion of the faces of S behhrd
C. R Is the projection of S onto the screen and R“ the projection
of S onto C.

A high-levei algorithm for rendering assemblies ciipped

by a cut-volume composed of a single half-space is pre-

sented below. It renders the cross-section through each

soiid using the coior (surface properties) of that solid4.
if C is a back clipping piane, the standard surface clipping

approach may be used, otherwise, we proceed as foiiows.

Single-plane sol id-cl ipping:

01
02
03
04
es
06

Activate C as a front clipping plane
For all pixels do Z=Et, 1=0, Mp=O
For each solid S do

Render all the faces of S toggling Mp
Deactivate C
Shade C and reset Mpwhere t4p==l

1 Tangential intersection cases, where the ray touches a primitive’s boundary wlthoul crossing it, must be treated properly by the hardware scan-
converslon, so as to ensure the correct panty at all pixels [9] Cases where a one-dimensional subset or the ray lies on a face are ignored by scan-
conversion procedures without compromising the parity condition

2 Scan-conversion inaccuracies, which produce inconsistencies when displaying overlapping coplanar faces, may be addressad by Introducing tolerances

in the depth-test [11]

3 The screen lies exactly between the viewpo)nt and the horizon-plane of all the vanishing peints

4 Interference areas may exhibit color mixing unless the interference highlighting technique of the next section is used
355

SIGGRAPH ‘92 Chicago, July 26-31, 1992

Line 02 resets the z-buffer (Z), the frame buffer (I), and
the pixel mask (Mp). During the rendering of the faces
of S (Line 04). the portions cut away by C or by the clip-
ping planes of the viewing volume are discarded. The
remaining portions are scan-converted and for each sur-
face point s projecting on some pixel q, the following op-
erations are performed: (1) toggle the parity mask Mp(q),
(2) if the depth of s is smaller than the depth stored at
q, update the z-buffer and the frame buffer at q. Note that
both the front and the back faces of S must be scan-
converted for the mask computation, although only the
front faces need to be rendered.

The cross-section filling of Line 06 is performed using the
color and surface properties of S, to distinguish the con-
tribution of each solid to the cross-section. C is deacti-
vated (Line 05) to prevent self-clipping.

The standard depth-test for hidden surface removal is
used during the rendering of the faces of S (Line 04) and
of the cross-section C (Line 06) to ensure that only visible
faces in a scene are rendered. Consequently, convex
cut-volumes may be produced using several passes
through this algorithm for different clipping planes.

To render the cross-section using the standard scan-
conversion with hidden-surface removal, a suitable face
Fc on C must be constructed. As the clipping plane is
manipulated interactively, Fc must be adjusted to always
contain the cross-section area. We use a rectangle in C
enclosing the orthogonal projection, R’, of S onto C (Fig-
ure 5).

Polyhedral cut-volumes with concave edges defined as
arbitrary Boolean combinations of half-spaces may be
needed to better expose the internal structure of tight
assemblies. An example is shown Figure 6. The remain-
der of this section presents an extension of the solid-
clipping technique for such cut-volumes.

Figure 8. Sol/d-clipping with non-convex cut-volumes: Three
clipping planes. Cl,Cp. and Cs, are used to define a compound
cut-volume, Cl n (C2 u (23).

Although, the metaphor of a “cut-volume”, v, interac-
tively manipulated by the designer to remove obstructing

An efficient implementation of the solid-clipping with
composite cut-volumes requires: (1) a standard z-buffer,
(2) an application-controlled set of clipping planes, (3) one
bit-plane for the mask, and (4) facilities for programming
the scan-conversion so as to toggle the bit-plane for each
surface point and to use the mask as a condition for ren-
dering. All these facilities are supported by commercially
available graphics hardware for a limited number of
application-controlled clipping planes.

5 The dlsiunctivelorm is a union of products, each product wing me inlersecllon of half-spaces.

356

portions of the assembly may be more intuitive than the
notion of a “clipping volume”, v’, used to delimit the as-
sembly through an intersection operation, both formu-
lations are equivalent, since v’ is the complement, V, of
v, and for any solid S, we have: S - v = S n v’.

Given a Boolean expression of v, it is straightforward to
extract a disjunctive forms for v’. For example, if the lin-
ear half-space volumes are denoted Vi, the cut-volume
v = (vj U ~2) rl (~3 U v,) yields the following disjunctive
form of two products: fl n a u 6 n 3 for v’.

The intersections of S with these convex clipping-
products are processed one-by-one using the algorithm
below. The image of the union of these intersections is
composed via the standard z-buffer test.

Solid-clipping algorithm for (I clipping-product:
01 For all pixels do Z=D, IsO, Hp-13
02 For each solid S do
03 For each clipping-product P do
04 Activate all the front clipping planes of P
05 Disable writing into the depth and frame buffers
06 Render all the faces of S toggling Hp
07 Select rendering color for S
08 Enable writing into the depth and frame buffers
09 Activate all the front and back clipping planes
10 Render the front faces of S
11 For each front clipping plane C in P do
12 Deactivate C
13 Shade C and reset Hp for pixels where Hp-=l
14 Activate C
15 Deactivate all planes of P

In Line 06, the front and back faces of S are clipped
against all the front clipping planes of a product and then
scan-converted. Each time a pixel q is visited during that
scan-conversion, its mask bit Mp(q) is toggled. The frame
and z-buffers are never updated during that scan-
conversion (see Line 05). After the execution of tine 06,
the mask Mp corresponds to a cut-volume composed of
only the front cutting planes of that product (see Figure
7). When the cross-sections are displayed for that prod-
uct (Line 13), this mask is used in conjunction with the
other front and back clipping planes to delimit the con-
tribution of each front clipping plane.

Each front clipping plane is temporarily deactivated (tine
12) prior to display (Line 13) to avoid self-clipping. The
portions of the front faces of S that lie within the
clipping-product and are not hidden by previously ren-
dered objects are rendered into the z-buffer and the
frame buffer (Line 10). The rendering in Line 13 is per-
formed using the standard z-buffer test.

Computer Graphics, 26, 2, July 1992

I screen /

performance on an affordable platform has not been

demonstrated. Boxing techniques provide only a neces-

1 r’ /
sary condition for interference. Consequently, the ap-
proach described in this section constitutes an important

W
-~A.———

s
Mp

——— — ——

cross-emotion

tool for detecting and displaying interferences. The first
portion of this section focuses on an extension of the
solid-clipping technique to highlight interferences in the
cross-sections (Figure 9). The second portion presents a

technique for automatically locating the beginning of in-

terference regions along a user-specified search direc-

tion. This search facility is used interactively for two

purposes: (1) to quickly and reliably establish that a par-

.~ B titular region is free of interferences or (2) to automat-

Figure 7. A4asking for a clipping-product Two front clipping
planes A and B and one back clipping plane C bound a
c/ipping-producL L4p is constructed by scan-converting S c/ipped
by A and B. The visible cross-sections are obtained by rendering
A (clipped to B and C) and B (clipped to A and C) over pixels
where Mp IS 1.

3. Interferences

Usually, a mechanical assembly must be free from inter-

ferences, but may contain lower-dimensional contact re-

gions z between its components.

Intersections between pairs of solids may be computed

in various ways. A geometric approach evaluates the

boundary of the regularized Boolean intersection of the

two solids. The existence of a single vertex in the inter-

section suffices to indicate interference. Efficient Null

Object Detection techniques may be used, especially if
the solids are in CSG form [1 O, 15]. Hardware architec-

tures for testing interferences between triangulated

boundaries have also been proposed [16]. Although

asymptotically efficient computational geometry tech-

niques for finding the minimum distance between two
polyhedra are available [2], these numeric approaches

are too expensive for interactive inspection and should

be reserved for the final stages of the assembly verifica-

tion.

Two hardware-assisted graphics techniques are relevant

to interference detection: (1) a discretized (ray casting)

approach reduces interference detection to a series of

one-dimensional interval-intersection tests and is sup-

ported by special-purpose ray-casting hardware [3] and

(2) the ability to automatically select and report which of

the scan-converted objects interfere with an application-

defined block provides a mechanism for eliminating un-

necessary interference calculations. (Solids that are

clearly disjoint from any solid S because they are disjoint

from a box containing S may be efficiently identified that

way.)

Geometric intersection techniques are too expensive.

Ray-casting can be efficiently parallelized, but interactive

ically loc~te the first interference region a’nd position the

clipping plane at its beginning to facilitate the visual in-

spection of the extent of the interference. Subsequent

interferences are located automatically by starting the

search past the current interference region.

3,1 HighiighCing interference areas

The algorithm for highlighting the interference is pre-

sented below in its simplified version for a clipping
product restricted to a single front ciipping piane C. The

successive steps are illustrated in Figure 8, The aigorithm

computes a parity pixel mask, Mp, for the cross-section

of the current soiid, a cumulative (union) pixel mask, Mu,

for the union of the cross-sections of all previously proc-

essed solids, and an intersection-mask, Mi, The cross-

section of the solid, restricted to (Mp AND NOT Mu), is

rendered with the soiid’s colors. The interference area

is rendered at the end in a highlighted mode over Mi.

Algorithm for highl ighting interferences:

01 For all pixels do Z=O, 1=0, Mu-O, Mi=O, and Mp=O
02 For each solid S do
03 Activate C as a clipping plane
04 Scan S toggling Mpand rendering where Mu==O
05 Oisable writing into z-buffer
06 Deactivate C
07 Render C where Mp==l and Mu==O
08 For all pixels in R do
09 If (Mu==l &&Mp==l) Mi=l
10 If (Np==l) Nu=l and t!p=O
11 Enable writing into the z-buffer
12 Oisable writing into z-buffer
13 Select color and style for the interference
14 Render R’ on C for pixels where Hi==l
15 Enable writing into the z-buffer
16 Oisable writ{ng into the frame buffer
17 Render R’ on C for oixels where Mu==l

in Line 04, all the front and back faces of S are ciipped

by C and then scan-converted. For each access to a pixei

during that scan-conversion the pixei’s parity mask, Mp,

is toggied. Furthermore, if at that pixei the mask Mu is

not set, the z-buffer and frame buffer are updated. (Note

that this update is not necessary for the back faces of S.)

Testing Mu prior to update avoids overwriting previously

computed cross-sections for which the z-buffer has not

yet been properly set.

6 The interference between two solids A and B is their regularized intersection (A n*B) Regularization removes lower dimensional parts, ihus, the regu.

Iarized intersection IS the closure of the interior of the Intersection [8]

7 The contact between two solids Is ((A n B) (A n*B)), the set theoretic difference between their set theoretic Intersection and their regularized inter-

section
357

SIGGRAPH ‘92 Chicago, July 26-31, 1992

In Line 07, the R’ portion of C is rendered over pixels in
the Mp mask, but out of the Mu mask, to fill the cross-
section contribution of S. However, the z-buffer is not yet
updated to the cross-section depth, so as to avoid
depth-conflicts when filling in the interference-region,
Line 14. The z-buffer is correctly set in Line 17, without
altering previously computed colors in the frame buffer.
This technique of delaying the update of the z-buffer is
used to make sure that when the interference area of the
cross-section is filled, the surface depth is not compared
to previously computed z-values from pixels on the same
cross-sectioning plane. Such comparisons, when per-
formed with limited numeric accuracy, produce incon-
sistent pixel colors across the overlap area.

Figure 8. Highlight wnstruction: A 20 slice through the scene Is
used to explain the steps of the interference-highlighting algo-
rithm. The interfering solids A and B are intersected by the clip-
ping plane C. In the drawing the contents of the z-buffer is
indicated by thin horizontal lines. The contents of the pixel-masks
are shown using the thin vertical lines on the left. Asserted bits
are shown by heavy lines. The contents of the frame buffer is in-
dicated using colors in the vertical window on the /eft of each
figure. Color lines on the contours of A. B, or C indicate, for each
pixel, which surface has contributed to the frame buffer. (a)
Solid A is scan-converted into the frame buffer and the z-buffer;
the parity mask is constructed in Mp. (b) The contents of Mp is
unioned into Mu. (c) Solid B is scan-converted into the frame
buffer and the z-buffer; the parity mask is constructed In Mp. (d)
MI Is asserted where Mp and Mu overlap. The contents of Mp is
unloned into Mu. (e) The cllpping plane is scan-converted into
the frame buffer. Regions of interference are marked in red. (f)
The clipping plane is scan-converted into the depth buffer.

Flgure 9. interference hlghlight: The solid-dipping technique of
Ftgure 4 is enhanced by highlighting (in red) the cross-section
regions where pairs of solids interfere. The portion of the as-
sembly removed by the cut-volume is d/splayed in transparent
mode.

An elegant alternative was independently invented by
Akeley Cl]. It exploits the numeric increment operation
on three stencil bits to implement our mask-combine op-
erations (Lines OS and 10). For each solid, Mp is com-
puted as in our approach. Then the 3-bit counter
(Mi,Mu,Mp) is incremented for pixels where Mp is set. The
counter clamps to preserve Mi in case of overflow (i.e.
when more than three solids are intersected by the same
portion of the cross-section plane).

Using several parallel cross-section planes and only
rendering interference areas, one can produce stacks of
20 cross-sections that indicate the extent and the shape
of the 3D interference volume (see Figure 10). An algo-
rithm for rendering only the Interference part, i.e. the
cross-section where the mask Mi was set may be ob-
tained by eliminating the shading operations Lines 04, 07,
and 17. It was used to produce the stacks of Figure 10.

Figue 10. Interference stacks: The Interference visualization
technique of Figure 9 is further enhanced with stacks of parallel
cross-sections through the 30 interference region.

358

Computer Graphics, 26, 2, July 1992

3.2 Locating interference regions

This subsection is devoted to the automatic detection and
location of interferences and contacts along a user-

defined search direction and within a given search inter-
val.

Without loss of generality, the search direction is chosen

orthogonal to the cross-sectioning plane C. The search

interval is confined to a slice between C and another

plane C’ parallel to C. The location of C’ may be specified

by the user or computed automatically from a bounding

box, so as to extend past the entire assembly. The posi-

tions of C and C’ are indicated by the starting and ending

parameters Z,ati and Z,nd along the search direction D.

Using a stack of parallel cross-sections evenly distributed

between Ztian and ZOn~and testing if any of them contains

an interference region will not guarantee the detection

of interferences, since these may occur between two

consecutive cross-sections. The cost of testing a suffi-

cient number of cross-sections to reduce the size (in

depth) of possibly missed interferences is prohibitive.

Instead of such a discrete probing, the technique pre-

sented here uses the procedure “IntersectionFreeSlice”

to compute a sufficient but not necessary condition for

interference. If the answer is negative, the designer may

be reassured immediately. Otherwise, the following al-

gorithm recursively subdivides the search interval

(Ztifi, Z.~) until a user-defined maximum level (i.e. mini-

mal slice thickness), L, is reached (in which case, the

beginning of a possible interference region is returned)

or until all branches of the search tree that correspond

to positive test result have been explored (in which case

there is no interference and Z.ti is returned). The mini-
mal slice thickness, the depth resolution, and the z-

scaling factors control the accuracy of the test and define

the ability to differentiate between interference and con-

tact. The command Search(Ztiati, Zon& Ml), where Ml de-

fines the maximum recursion level, starts the search.

Ml may be adjusted to ensure the desired accuracy. The

parameters, 2s, Ze, and level define the current status

of the recursion,

Algorithm for interval 1ocation:

91 Search (Zs, Ze,level)
e2 If (Intersect ionFreeSl ice(Zs, Ze)) return Zend
03 If (level -=L) return Zs
04 Zm=(Zs+Ze)/2
05 Zf=Search (Zs, Zm,level+l)
06 If (Zf!=Z,nd) return Zf
07 Else return Search (Zm,Ze,level+l)

A 2D bounding box around the discovered interference is

used to position an arrow highlighting the potential in-

terference region. The clipping plane C is automatically

placed at the beginning of that interval, so that the user

can inspect the area, then move C past the current in-

terference, and finally resume the search.

The “IntersectionFreeSlice” test is implemented in the

following algorithm by generating a mask Mp for the

projection of the intersection of the current solid S with

the slice and by testing if this mask intersects the Mu

mask for the union of the projection of previously proc-

essed solids. The approach is based on the following

property.

If the projections of the slices through the solide are die-
joint, there is no interference within the ailce.

Intersect ionFreeSl ice:

01 Activate C as a front clipping plane
02 For all pixels do Mu=tl, Mi=O, 14p=0
03 For each solid S do
04 Scan-convert S toggling Mp
05 Activate C’ as a back clipping plane
06 Scan-convert S forcing i4p=l
07 For all pixels in R do
08 If (Hu==l ~& Mp==l) return O

09 If (Hp.-l) Mu-1 and Mp=O

To avoid missing thin interferences that fall between

pixels, it suffices, as part of the shading of a solid, to draw

the edges of each solid in lines 3 pixels wide. Each edge

must be drawn twice to maintain the parity condition. (We

simply draw the edges of each face after shading it.) On

the other hand, to distinguish contact regions from true

interferences, we apply a two-dimensionai discretized

morphological shrinking operation [12], i.e. a 3x3 filter

over ali pixels, to the mask Mi so as to remove interfer-

ences that are thinner than two pixeis.

By acting on the scaling factor (i.e. the space distance

corresponding to the inter-pixel resolution), one can ad-

just the thresholds between clearance, non-invasive

cent act, and true interference. By performing the

“lntersectionFraeSlice” test twice (once with drawing the

edges and once with eroding the mask) one can distin-

guish ciearance (if both test return false), from contacts

(if the results of imth tests are different), from interfer-

ences (if both tests return true). However, searching true
interferences (through mask erosion) for regions with

oblique contact areas between overlapping faces of dif-
ferent objects forces the adaptive subdivision to visit all

the branches of the search tree down to a depth corre-

sponding to a slice thickness for which there is no inter-
ference between the projections of the solids.

The interference search automatically positions the

cross-sectioning plane at the beginning of an interference

region. The user examines the interference by moving

the viewpoint and the clipping piane. The interfering ob-

jects may be selected by a graphic pick and the corre-

sponding CAD modeis which require engineering changes

may be identified. Facilities for interactively hiding some

models or for producing exploded views also help decide

which of the interfering parts must be redesigned.

The search algorithms described above require exten-

sions to the functions supported by currently available

graphics iibraries and may also involve some hardware

modifications. For example, Line 08 of the

“lntersectionFreeSlice” algorithm requires a feedback

from the buffer to the application. Such a feedback exists

for reporting enclosing boxes around pixels traversed by

the scan-conversion, but does not take into account any

result of testing mask values for these pixels. This step

is handled trxfay by the application software which must

inspect each pixel of Mi. Similarly, the erosion operation

is also currently performed in software, which consider-

ably reduces the performance of the search algorithm.

359

SIGGRAPH ’92 Chicago, July 26-31, 1992

Nevertheless, except for regions where two or more ob-

jects are in contact, the search algorithm only visits a few

branches of the search tree, and thus its software imple-

mentation requires the inspection of only a small number

of pixel-masks within a limited domain (R).

Conclusion
Simple algorithms for displaying cross-sections through

solids, for highlighting interference areas, and for auto-

matically detecting interferences and contacts between

solids have been presented. Because the additional cost

for filling the cross-sections and for highlighting interfer-

ence areas does not significantly exceed the original

rendering cost, these algorithms exhibit realtime per-

formance for small assemblies–with the exception of in-

terference detection. They provide the engineering

visualization techniques needed to replace the expensive

c1ay models, traditionally used during the design-

inspection phases, by electronic “virtual” solid models.
The algorithms have been integrated in an experimental

system developed by the Interactive Geometric Modeling

group at IBM Research and have been successfully

tested on industrial assembly models.

Acknowledgements
We are very grateful to Kurt Akeley for his comments on

this paper and for allowing us to compare both his and

our implementations. We also wish to thank Dan

Brokenshire for pointing out the limitations of the stand-
ard clipping technique for solid modeling applications and

for participating in the early phases of this work.

References
[1] Kurt Akeley, Silicon Graphics Inc.. Private communi-

cation subsequent to the SIGGRAPH review process.

March 1992.

[2] David Dobkin and Herbert Edelsbrunner, Space

Searching for Intersecting Objects. ACM & IEEE Sum. on

Foundations of Computer Science, IEEE Computer Society

Press, New York, NY, 387-392, 1984.

[3] John Ellis, Gershon Kedem, Rich Marisa, Jay Menon,

and Herbert Voelcker, Breaking Barriers in Solid Model-

ing. Cl ME, pages 28-34, February 1991.

[4] Dave Epstein, Friderik Jansen, and Jarek Rossignac,

Z-buffer Rendering from CSG: The Trickle Algorithm. Re-

search Report, RC 15182, IBM T.J. Watson Research

Center, Yorktown Heights, NY, December 1990.

[5] Jack Goldfeather, Steve Molnar, Greg Turk, and

Henry Fuchs, Near Real-Time CSG Rendering Using Tree

Normalization and Geometric Pruning. IEEE Computer

Graphics and Applications, 9(3):20-28, May 1989.

[6] Starbase Reference Manual. “set_capping_planes”

command. Hewlett Packard.

[7] Martti M~ntylli, An Introduction to Solid Modeling.

Computer Science Press, Rockville, Maryland, 1988.

[8] Aristides Requicha and Robert Tilove, Mathematical

Foundations of Constructive Solid Geometry: General

Topology of Regular Closed Sets. Production Automation

Project, Tech. Memo. No. 27a, Univ. of Rochester, June

1978.

[9] Jarek Rossignac, Accurate scanconversion of trian-

gulated surfaces, in A. Kaufman, editor, Advances in

Computer Graphics Hardware Vl, Springer-Verlag, Berlin,
1992.

[10] Jarek Rossignac and Herbert Voelcker, Active Zones

in CSG for Accelerating Boundary Evaluation, Redun-

dancy Elimination, Interference Detection and Shading

Algorithms. ACM Transactions on Graphics, 8(1)51-87,

January 1989.

[11] Jarek Rossignac and Jeffey Wu, Correct Shading of
Regularized CSG Solids Using a Depth-interval Buffer.

Eurographics Workshop on Graphics Hardware,
Lausanne, Switzerland, September 1990.

[12] Jean Serra, Image Analysis and Mathematical

Morphology. Academic Press, New York, 1982.

[13] Graphics Library-Reference Manual, Iris 4D VGX.

Silicon Graphics, Inc., 1990.

[14] Robert Tilove, Line/Polygon Classification: A Study

of the Complexity of Geometric Computation. IEEE Com-

puter Graphics and Applications, 1(2):75-88, April 1981.

[15] Robert Tilove, A Null Object Detection Algorithm for

Constructive Solid Geometry. Comm. ACM, 27(7):684-694,

July 1984.

[16] Fujio Yamaguchi, A unified approach to interference

problems using a triangle processor. Proceedings

SIGGRAPH’85, 19(3):141-149, 1985.

36a

